This program continues to study the tissue specific and developmental regulation of the osteocalcin (OC) gene and the factors that contribute to induction and progression of osteoblast (OB) maturation. In the current program period, we discovered a regulatory network of homeodomain (HD) proteins that provide molecular switches for mediating the temporal expression of OC with a pivotal activating role for Dlx3 at the onset of OC transcription. A novel regulatory element for the Hox transcription factors was discovered that binds Hoxa10 for activation of OC transcription. Hoxa10 and Dlx3 are bound to the OC gene prior to Runx2 and increase again with Runx2 binding. In addition, these factors can activate the OC gene in Runx2 null cells, thus providing evidence for molecular events contributing to expression of the OC and bone related genes upstream of Runx2. These findings justify further investigation of their functional roles in osteoblasts in vivo and in vitro. We postulate that these two regulatory factors have key roles in regulating gene expression throughout OB differentiation, a function distinct from their activities in embryonic patterning of the skeleton. We will identify these OB- related functions by determining the mechanism by which they regulate developmental expression of OC which include contributing to chromatin remodeling, regulating activation and repression of gene transcription through interactions with co-regulatory factors, and functioning both independent of Runx2 and coordinated with Runx2 for establishment of the OB phenotype.
Aim1 tests the hypothesis that dynamic association/dissociation of these factors with osteocalcin chromatin occurs at specific stages of phenotype development due to formation of transcription factor complexes modifying chromatin architecture of OC.
Aim 2 addresses the hypothesis that Hoxa10 functions upstream of Runx2 to promote epigenetic marking of the OC gene for tissue specific activation, and regulation of target gene expression in OBs. Its deletion from OB in vitro and in vivo is postulated to alter OB maturation and contribute to a mild bone phenotype in adult mice.
Aim 3 postulates that Dlx3 has a transient role in gene regulation, responsible for the timing of transcription of the OC gene and coordinated occupancy of Runx2 which will be addressed ex vivo in cells from the Dlx3 null and conditional knockout mice. We further postulate that the human Dlx3 tricho-dento-osseous (TDO) mutation alters the transient function of Dlx3 in osteoblasts as a result of loss-of-function of interacting co-regulatory proteins. These studies will identify novel mechanisms and regulatory pathways required for induction and regulation of OC and regulation of OB maturation to the differentiated phenotype in a mineralizing matrix.PROJECT NARRATIVE

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
5R37DE012528-26
Application #
8043623
Study Section
Skeletal Biology Structure and Regeneration Study Section (SBSR)
Program Officer
Wan, Jason
Project Start
1989-04-01
Project End
2013-02-28
Budget Start
2011-03-01
Budget End
2012-02-29
Support Year
26
Fiscal Year
2011
Total Cost
$429,268
Indirect Cost
Name
University of Massachusetts Medical School Worcester
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
603847393
City
Worcester
State
MA
Country
United States
Zip Code
01655
Tye, Coralee E; Boyd, Joseph R; Page, Natalie A et al. (2018) Regulation of osteogenesis by long noncoding RNAs: An epigenetic mechanism contributing to bone formation. Connect Tissue Res 59:35-41
Tracy, Kirsten M; Tye, Coralee E; Ghule, Prachi N et al. (2018) Mitotically-Associated lncRNA (MANCR) Affects Genomic Stability and Cell Division in Aggressive Breast Cancer. Mol Cancer Res 16:587-598
Hong, Deli; Fritz, Andrew J; Finstad, Kristiaan H et al. (2018) Suppression of Breast Cancer Stem Cells and Tumor Growth by the RUNX1 Transcription Factor. Mol Cancer Res 16:1952-1964
Lavoie, B; Roberts, J A; Haag, M M et al. (2018) Gut-derived serotonin contributes to bone deficits in colitis. Pharmacol Res :
Tracy, Kirsten M; Tye, Coralee E; Page, Natalie A et al. (2018) Selective expression of long non-coding RNAs in a breast cancer cell progression model. J Cell Physiol 233:1291-1299
Hong, Deli; Fritz, Andrew J; Gordon, Jonathan A et al. (2018) RUNX1-dependent mechanisms in biological control and dysregulation in cancer. J Cell Physiol :
Zheng, Leilei; Tu, Qisheng; Meng, Shu et al. (2017) Runx2/DICER/miRNA Pathway in Regulating Osteogenesis. J Cell Physiol 232:182-91
Zingiryan, Areg; Farina, Nicholas H; Finstad, Kristiaan H et al. (2017) Dissection of Individual Prostate Lobes in Mouse Models of Prostate Cancer to Obtain High Quality RNA. J Cell Physiol 232:14-8
Dobson, Jason R; Hong, Deli; Barutcu, A Rasim et al. (2017) Identifying Nuclear Matrix-Attached DNA Across the Genome. J Cell Physiol 232:1295-1305
VanOudenhove, Jennifer J; Grandy, Rodrigo A; Ghule, Prachi N et al. (2017) Unique Regulatory Mechanisms for the Human Embryonic Stem Cell Cycle. J Cell Physiol 232:1254-1257

Showing the most recent 10 out of 132 publications