Our goal is to define how oxidative nuclear receptor (ox-NR) ligands and cofactor complexes influence physiology and disease by controlling patterns of gene expression. The underlying hypothesis of this proposal is that ox-NR signaling is mediated by ligand-directed chromatin modifications and that the resulting induced epigenomic state (epi-state) mobilizes groups or networks of genes to produce unique cell function and physiology. To do this, in Aim I we will use a protein chemistry approach to define the dynamic properties of epi-genomic complexes (epi-complexes) assembled by nuclear receptors involved in regulating oxidative metabolism (ox-NRs). Changes induced in epi-complexes isolated from metabolically active tissues, such as muscle and brown adipose tissue, by environmental modulators including exercise, cold exposure, and fasting, will identify key epigenetic regulators required for context-specific gene regulation.
Specific Aim II will establish the comparative changes in gene expression signatures that correlate to changes in the above epi-complexes. In addition, we will monitor shifts In key metabolic parameters influenced by the metabolic stressors and treatment with ox-NR ligands and modulators.
In Aim III, chromatin mmunoprecipitation coupled to massively parallel sequencing (ChlP-Seq) experiments will determine the specific genomic locations (cistromes) of ox-NRs in the metabolically active tissues. Stimuli-Induced alterations in ox-NR cistromes, combined with the changes in gene expression identified in Aim II, will allow causal associations to be drawn between epi-complexes and gene regulation.
Aim I V will define the epigenetic signatures of ox-NRs by mapping key histone acetylation activation and methylation markers in metabolically active tissues with and without stress induction. We believe that nuclear receptors play a critical role in driving epigenomic control. By making key links between the epigenome, metabolism and normal physiology this application provides a unique means to extend this understanding to metabolic disease and facilitates the development of new classes of drugs that can treat diseases of metabolism by treating the genome.

Public Health Relevance

This proposal is directed at identifying how oxidative nuclear hormone receptors modulate the structure, function and accessibility of the genome to control gene expression and body physiology. Receptor regulated pathways are particularly relevant to the epidemics of obesity, diabetes and cardiovascular disease and this work Is anticipated to provide insights for the development of hew diagnostics and therapeutics.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
5R37DK057978-38
Application #
9022468
Study Section
Special Emphasis Panel (NSS)
Program Officer
Silva, Corinne M
Project Start
1979-04-01
Project End
2020-03-31
Budget Start
2016-04-01
Budget End
2017-03-31
Support Year
38
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Salk Institute for Biological Studies
Department
Type
DUNS #
078731668
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Hong, Suk-Hyun; Fang, Sungsoon; Lu, Benson C et al. (2018) Corepressor SMRT is required to maintain Hox transcriptional memory during somitogenesis. Proc Natl Acad Sci U S A 115:10381-10386
Ahmadian, Maryam; Liu, Sihao; Reilly, Shannon M et al. (2018) ERR? Preserves Brown Fat Innate Thermogenic Activity. Cell Rep 22:2849-2859
Wei, Zong; Yoshihara, Eiji; He, Nanhai et al. (2018) Vitamin D Switches BAF Complexes to Protect ? Cells. Cell 173:1135-1149.e15
Fan, Weiwei; He, Nanhai; Lin, Chun Shi et al. (2018) ERR? Promotes Angiogenesis, Mitochondrial Biogenesis, and Oxidative Remodeling in PGC1?/?-Deficient Muscle. Cell Rep 22:2521-2529
Shalom-Barak, Tali; Liersemann, Jaclyn; Memari, Babak et al. (2018) Ligand-Dependent Corepressor (LCoR) Is a Rexinoid-Inhibited Peroxisome Proliferator-Activated Receptor ?-Retinoid X Receptor ? Coactivator. Mol Cell Biol 38:
Saison-Ridinger, Maya; DelGiorno, Kathleen E; Zhang, Tejia et al. (2017) Reprogramming pancreatic stellate cells via p53 activation: A putative target for pancreatic cancer therapy. PLoS One 12:e0189051
Gasser, Emanuel; Moutos, Christopher P; Downes, Michael et al. (2017) FGF1 - a new weapon to control type 2 diabetes mellitus. Nat Rev Endocrinol 13:599-609
Kriebs, Anna; Jordan, Sabine D; Soto, Erin et al. (2017) Circadian repressors CRY1 and CRY2 broadly interact with nuclear receptors and modulate transcriptional activity. Proc Natl Acad Sci U S A 114:8776-8781
Wu, Chyuan-Chuan; Baiga, Thomas J; Downes, Michael et al. (2017) Structural basis for specific ligation of the peroxisome proliferator-activated receptor ?. Proc Natl Acad Sci U S A 114:E2563-E2570
Sherman, Mara H; Yu, Ruth T; Tseng, Tiffany W et al. (2017) Stromal cues regulate the pancreatic cancer epigenome and metabolome. Proc Natl Acad Sci U S A 114:1129-1134

Showing the most recent 10 out of 113 publications