Candida is the third leading cause of catheter-related nosocomial bloodstream infections. Indwelling devices have been shown to support colonization and biofilm formulation by Candida. Intravenous lines are the most frequent indwelling device and are the single most common cause of candidemia. Once a Candida biofilm forms in vivo, removal of the substrate that is supporting the biofilm growth is almost always required to eliminate the infection. Unfortunately, in many instances removal is impossible due to deteriorated patient condition, anatomical location, or underlying disease. The goal of this project is to incorporate an antifungal agent into unique, patented formulations to create a coating for medical devices that is resistant to C. albicans. A coating and antifungal delivery system that could extend the time and/or increase the rate of delivery and achieve a higher concentration of antifungal agents to a C. albicans-susceptible site would have enormous therapeutic advantages over systemic and inefficacious topical routes of delivery. To demonstrate the feasibility of this approach, the specific aims are to optimize the coating formulation for use as short-term antifungal coatings for medical devices, evaluate the coatings for antifungal activity in vitro, and to perform an intramuscular implantation study in rabbits.

Proposed Commercial Applications

Candida albicans is by far the most frequently isolated human mycotic agent. The large number of immunosuppressed patients with indwelling devices combined with the extensive social and economic costs associated with treating C. albicans-related infections serve as justification for the pursuit of alternative therapies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Small Business Technology Transfer (STTR) Grants - Phase I (R41)
Project #
1R41AI051816-01
Application #
6485882
Study Section
Special Emphasis Panel (ZRG1-SSS-W (10))
Program Officer
Korpela, Jukka K
Project Start
2002-09-01
Project End
2004-08-31
Budget Start
2002-09-01
Budget End
2004-08-31
Support Year
1
Fiscal Year
2002
Total Cost
$100,000
Indirect Cost
Name
Biomedical Development Corporation
Department
Type
DUNS #
City
San Antonio
State
TX
Country
United States
Zip Code