The project demonstrates an ultra-high resolution x-ray imaging system. It provides high contrast images of the density structure of objects that are otherwise x-ray transparent, e.g. low-Z human soft-tissue, and obtains edge enhanced contrast from x-ray refractive-index gradients. In mammography the contrast of a microcalcification is increased typically by 4-fold, and cancerous masses by much more. The system can be tuned to obtain element selective contrast to image resonantly minute quantities of a tracer element with Z=35-56, and only that element. It virtually eliminates the blurring and contrast-reducing effects of x-ray scatter. It operates at 15-40keV average x-ray energy with 3-50- fold reduced patient dosage, and significantly reduces the scanning time for CT 3D-imaging. It uses physical optics principles to form a Talbot-Lau imaging x-ray interferometer. It uses a conventional x-ray tube and filter, two microfabricated x-ray diffraction gratings, a CCD detector (and/or film), and an in-situ laser interferometer for alignment. Phase-I demonstrates a scatter-free 3cmx3cm image at - 50micrometers resolution, with refractive-index and/or tracer imaging. Phase-II similarly obtains >10cmx10cm images with an engineering prototype for a marketable device.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Small Business Innovation Research Grants (SBIR) - Phase I (R43)
Project #
1R43CA076858-01
Application #
2538319
Study Section
Special Emphasis Panel (ZRG7-SSS-7 (57))
Program Officer
Menkens, Anne E
Project Start
1997-09-30
Project End
1998-12-15
Budget Start
1997-09-30
Budget End
1998-12-15
Support Year
1
Fiscal Year
1997
Total Cost
Indirect Cost
Name
J. F. Clauser and Associates
Department
Type
DUNS #
City
Walnut Creek
State
CA
Country
United States
Zip Code
94596