This project will apply novel ultra-wideband (UWB) wireless impulse radio technology to provide connectivity from consumer electronics devices directly to micro- behind-the-ear (micro-BTE) hearing aids. In hearing aids, capturing sound close to the source before it is combined with background noise offers better signal to noise ratio. In the case of consumer electronics devices, hearing aid users encounter difficulties with sound quality when using the integrated speakers of such devices. These devices often provide an audio output which offers a low noise signal. The proposed device will digitize this signal from the audio port before noise is added and transmit it digitally directly to the hearing aid. Existing methods to transmit audio signals to hearing aids from consumer electronics devices include Bluetooth, magnetic coupling (digital and analog), and FM. FM radios are prone to interference and distortion and are being replaced by digital wireless solutions. Bluetooth is too high of power to be directly integrated into hearing aids and so these solutions require larger batteries in modules external to the hearing aid. Magnetic coupling can be made low power but can only transmit for short distances. There are many reasons why previous connectivity systems have experienced poor adoption rates and most are related to the intermediate relay module found in current solutions. The proposed solution will be the first to eliminate this relay module allow direct long-range transmission to a micro BTE hearing aid. The proposed wireless technology will offer larger distances (15 ft.) than magnetic coupling solutions and lower power (<200uW) than all digital alternatives. This technology can be integrated directly into micro-BTE hearing aids. The transmitter module will also be miniaturized around a standard audio plug for a discrete (< 0.3 in3), easy to use device. Project Narrative More than 28 million Americans suffer from or face imminent hearing loss. The segments of hearing aid users that can receive the greatest benefit from the proposed technology are the estimated 10% of hearing-impaired persons suffering signal-to-noise-ratio loss. These individuals have a reduced ability to hear in acoustically noisy environments. ? ? ?