? The main objective of this proposal is to develop an innovative state-of-the-art intelligent system for managing mental health clinical trials. This system is designed to greatly improve usability and reduce errors and costs, while enabling and supporting the advancement of psychiatric and behavioral research. In the context of a highly scalable architecture, innovative techniques are introduced for(1) a human-computer interaction (HCI) design methodology to define interaction patterns by applying analysis techniques solidly grounded on cognitive theory; (2) a multi-machine user interaction algorithm that uses a common underlying form structure and intelligence to enable the collection of data by different users of the system through a diversity of interface devices, such as Web thin clients, mobile and desktop computers, handheld computers and personal digital assistants (PDAs), and interactive voice response (IVR) tools; and (3) the tight integration of sophisticated, intelligent data representations for complex psychometric instruments and detailed clinical trial protocol modeling. The proposed system is specifically designed to effectively interact with trial investigators and developers, clinical personnel, and patients in order to provide efficient end-to-end trial data acquisition, management, and analysis, and incorporates advanced graphical configuration and visualization tools for protocol and form design, automated decision-support, compliance and adverse event tracking, autonomous data exchange with external systems, and alerting mechanisms. ? ? Throughout the project, INFOTECH Soft will rely on its user-centered formative design process and quality assurance strategy to ensure that the Psych Trials System adheres to its functional requirements and involves the end-user in important usability analysis. During phase I, cognitive dimensions analysis will be undertaken for a tightly defined set of activities that subjects are expected to accomplish using PDA and Web-based interfaces. This analysis will result in the definition of interaction patterns specific to each device. A prototype of the multi-machine user interaction algorithm will be developed as a proof-of-concept to assess the viability and clinical acceptance of the technique and to identify technical issues to be resolved towards phase II development. At the end of Phase II, the Psych Trials System will be pilot tested under a diverse set of realistic conditions in clinical trials to ensure that the system meets the functional specification, usability requirements, and performance demands in real-world clinical environments. ? ?