Positron Emission Tomography (PET) is a functional imaging technique with potential to quantify the rates of biological processes in vivo. The availability of short lived positron-emitting isotopes of carbon, nitrogen, oxygen and especially fluorine allows virtually any compound of biological interest to be labeled in trace amounts and introduced into the body for imaging with PET. The distribution of the tracer is imaged dynamically, allowing the rates of biological processes to be calculated using appropriate mathematical models. PET imaging can provide diagnosis for symptoms of diseases such as Alzheimer's disease, head trauma, and stroke. PET technology is also playing a prominent and an increasingly visible role in modern cancer research, clinical diagnosis and oncology. While PET is a powerful imaging tool, the performance of current clinical PET systems is limited by the available detector technology and there is an urgent need for improvement in PET instrumentation in order to exploit the full potential of this promising technique. The goal of the proposed effort is to design, build and implement new, solid-state photodetectors for reading out scintillation crystals in PET imaging. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Small Business Innovation Research Grants (SBIR) - Phase I (R43)
Project #
1R43NS060197-01
Application #
7325545
Study Section
Special Emphasis Panel (ZRG1-SBMI-T (10))
Program Officer
Pancrazio, Joseph J
Project Start
2007-08-01
Project End
2008-07-31
Budget Start
2007-08-01
Budget End
2008-07-31
Support Year
1
Fiscal Year
2007
Total Cost
$100,000
Indirect Cost
Name
Radiation Monitoring Devices, Inc.
Department
Type
DUNS #
073804411
City
Watertown
State
MA
Country
United States
Zip Code
02472