Chlamydia is a pathogenic bacterium with a significant impact on public health. In 2006, more than a million chlamydial infections were reported to the CDC making it the most commonly reported infectious disease. The ability of this organism to cause disease is related to its unusual developmental cycle, which takes place inside a human cell. Our long term objective is to understand how this pathogen controls the expression of its genes at different times in the developmental cycle so that it can successfully grow and replicate. Our central hypothesis is that the three temporal classes of early, mid and late chlamydial genes are coordinately regulated at the transcriptional level by distinct mechanisms.
Aim 1 will determine if mid genes, which are the largest temporal class of chlamydial genes, are activated by increased DNA supercoiling.
Aim 2 will examine the mechanisms that regulate late genes to prevent their premature expression. Studies will investigate whether the two subsets of late genes are each controlled by a repressor that prevents transcription.
Aim 3 will investigate if early genes are selectively expressed at the beginning of an intracellular infection because they are resistant to an inhibitor of RNA polymerase. Successful completion of these studies will help us to understand how Chlamydia controls the programmed expression of its genes. These findings may lead to novel therapeutic strategies for treating chlamydial infections by interrupting the developmental cycle.

Public Health Relevance

Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections in the U.S., and more cases of C. trachomatis genital infections are reported to the CDC than any other infectious disease. This project will study how this pathogenic bacterium is able to survive and replicate inside an infected cell by regulating the temporal expression of its genes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
High Priority, Short Term Project Award (R56)
Project #
2R56AI044198-11A1
Application #
8130163
Study Section
Bacterial Pathogenesis Study Section (BACP)
Program Officer
Hiltke, Thomas J
Project Start
1999-08-01
Project End
2012-02-29
Budget Start
2010-09-07
Budget End
2012-02-29
Support Year
11
Fiscal Year
2010
Total Cost
$382,500
Indirect Cost
Name
University of California Irvine
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
046705849
City
Irvine
State
CA
Country
United States
Zip Code
92697
Rosario, Christopher J; Tan, Ming (2016) Regulation of Chlamydia Gene Expression by Tandem Promoters with Different Temporal Patterns. J Bacteriol 198:363-9
Hanson, Brett R; Slepenkin, Anatoly; Peterson, Ellena M et al. (2015) Chlamydia trachomatis Type III Secretion Proteins Regulate Transcription. J Bacteriol 197:3238-44
Hanson, Brett R; Tan, Ming (2015) Transcriptional regulation of the Chlamydia heat shock stress response in an intracellular infection. Mol Microbiol 97:1158-67
Rosario, Christopher J; Hanson, Brett R; Tan, Ming (2014) The transcriptional repressor EUO regulates both subsets of Chlamydia late genes. Mol Microbiol 94:888-97
Cheng, Eric; Tan, Ming (2012) Differential effects of DNA supercoiling on Chlamydia early promoters correlate with expression patterns in midcycle. J Bacteriol 194:3109-15
Rosario, Christopher J; Tan, Ming (2012) The early gene product EUO is a transcriptional repressor that selectively regulates promoters of Chlamydia late genes. Mol Microbiol 84:1097-107
Akers, Johnny C; HoDac, HoangMinh; Lathrop, Richard H et al. (2011) Identification and functional analysis of CT069 as a novel transcriptional regulator in Chlamydia. J Bacteriol 193:6123-31
Case, Elizabeth Di Russo; Akers, Johnny C; Tan, Ming (2011) CT406 encodes a chlamydial ortholog of NrdR, a repressor of ribonucleotide reductase. J Bacteriol 193:4396-404
Chen, Allan L; Wilson, Adam C; Tan, Ming (2011) A Chlamydia-specific C-terminal region of the stress response regulator HrcA modulates its repressor activity. J Bacteriol 193:6733-41
Park, Narae; Yamanaka, Kinrin; Tran, Dat et al. (2009) The cell-penetrating peptide, Pep-1, has activity against intracellular chlamydial growth but not extracellular forms of Chlamydia trachomatis. J Antimicrob Chemother 63:115-23