hin B lymphocytes with little overt disease. However, a breakdown in immune surveillance, e.g., as a consequence of AIDS, remains a significant risk factor for development of EBV-associated lymphoma, underscoring the highly evolved equilibrium that exists between this potentially oncogenic herpesvirus and the host immune system. This equilibrium is dependent on a selective down-regulation of EBV latency-associated gene expression during establishment of persistent infection that ultimately restricts expression to viral genes critical for maintenance of persistence, while precluding those with acute transforming properties and/or which encode dominant epitopes recognized by the EBV-specific T-cell surveillance. A pivotal process in this transition to restricted latency is a promoter switching event that enables exclusive expression of the essential EBV genome-maintenance protein, EBNA-1, from the promoter Qp, which can be negatively regulated through two EBNA-1 binding sites immediately downstream of its transcription start site. Our recent efforts to define the mechanism of EBNA-1 repression revealed that it acts not by inhibition of transcription, as originally believed, but by suppression of pre-mRNA processing. The principal significance of this autoregulation, furthermore, has recently become apparent. Although EBNA-1 was earlier thought to be ?invisible? to the host immune surveillance as a consequence of its ability to inhibit in cis its degradation by the cell proteasome, thereby preventing presentation of EBNA-1 peptide epitopes in association with HLA class I molecules, subsequent studies indicated that cytotoxic T cells that recognize EBNA-1 not only exist, but that they are directed towards peptides generated during actual synthesis of EBNA-1, not by the degradation of mature EBNA-1. Thus, resistance to proteasomal degradation is secondary to the autoregulated expression of EBNA-1 as the primary mechanism employed by EBV to restrict EBNA-1-specific T-cell killing. Further, recently described antiapoptotic properties of EBNA-1 suggest that it may have tumorigenic potential. We hypothesize, therefore, that the autoregulatory function of EBNA-1 is highly critical to EBV persistence and its associated pathogenic potential: it ensures sufficient EBNA-1 for genome maintenance, while limiting EBNA-1 synthesis below a threshold that, if exceeded, would subject latently infected B cells to elimination by EBNA-1-specific cytotoxic T cells, and potentially oncogenic transformation. We propose three specific aims to help us reach our long-term objective of defining the contribution of EBNA-1 autoregulation to EBV biology, immune evasion and pathogenesis: 1) Define the mechanism of EBNA-1 autoregulation; 2) Elucidate the contributions of EBNA-1 autoregulation to the growth and restricted programs of latency; and 3) Define the respective roles of Qp and Fp, an alternative adjacent EBNA-1 promoter, in EBV infection.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
High Priority, Short Term Project Award (R56)
Project #
1R56AI073215-01A1
Application #
7681398
Study Section
Special Emphasis Panel (ZRG1-AARR-C (04))
Program Officer
Beisel, Christopher E
Project Start
2008-09-15
Project End
2009-07-31
Budget Start
2008-09-15
Budget End
2009-07-31
Support Year
1
Fiscal Year
2008
Total Cost
$379,236
Indirect Cost
Name
Pennsylvania State University
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
129348186
City
Hershey
State
PA
Country
United States
Zip Code
17033
Hughes, David J; Marendy, Elessa M; Dickerson, Carol A et al. (2012) Contributions of CTCF and DNA methyltransferases DNMT1 and DNMT3B to Epstein-Barr virus restricted latency. J Virol 86:1034-45
Hughes, David J; Dickerson, Carol A; Shaner, Marie S et al. (2011) trans-Repression of protein expression dependent on the Epstein-Barr virus promoter Wp during latency. J Virol 85:11435-47