Hepatitis C virus (HCV) chronically infects 2-3% of the global population, predisposing the patients to chronic liver diseases and liver cancer. A broadly effective vaccine will be a cost- effective mean to solve this global problem. However, HCV is genetically varied and vaccines designed based on a single viral strain will not be effectively against genetically diverse circulating viruses. To overcome this scientific challenge, the vaccine candidates must target conserved regions on the virus. The goal of this application is to determine the molecular structure of virus neutralizing epitopes to aid the rational design o immunogens, that will focus antibody responses to the conserved epitopes in vaccination. This """"""""epitope vaccine"""""""" approach include: (1) Determination of crystal structures of HCV antibody epitopes in complex with the corresponding broadly neutralizing antibodies;(2) Design and synthesis of immunogens as biomimetics of the known epitope structures;(3) Testing of the novel immunogens in a small animal model of HCV infection to identify lead vaccine candidates. If successful, this proposal can result in novel HCV vaccine candidates for clinical trials, and also significantly advance the HCV and vaccine fields.

Public Health Relevance

Hepatitis C virus (HCV) is a leading cause of liver cirrhosis and cancer. A broadly effective vaccine will be vital for the eradication of this silent epidemic The goal of this project is to develop and evaluate vaccine candidates that target genetically conserved regions of the virus.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
High Priority, Short Term Project Award (R56)
Project #
1R56AI106005-01
Application #
8728397
Study Section
Vaccines Against Microbial Diseases (VMD)
Program Officer
Koshy, Rajen
Project Start
2013-09-05
Project End
2014-08-31
Budget Start
2013-09-05
Budget End
2014-08-31
Support Year
1
Fiscal Year
2013
Total Cost
$792,744
Indirect Cost
$278,890
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Aleman, Fernando; Tzarum, Netanel; Kong, Leopold et al. (2018) Immunogenetic and structural analysis of a class of HCV broadly neutralizing antibodies and their precursors. Proc Natl Acad Sci U S A 115:7569-7574
Winer, Benjamin Y; Ding, Qiang; Gaska, Jenna M et al. (2016) In vivo models of hepatitis B and C virus infection. FEBS Lett 590:1987-99
Kong, Leopold; Lee, David E; Kadam, Rameshwar U et al. (2016) Structural flexibility at a major conserved antibody target on hepatitis C virus E2 antigen. Proc Natl Acad Sci U S A 113:12768-12773
von Schaewen, Markus; Hrebikova, Gabriela; Ploss, Alexander (2016) Generation of Human Liver Chimeric Mice for the Study of Human Hepatotropic Pathogens. Methods Mol Biol 1438:79-101
McBride, Ryan; Head, Steven R; Ordoukhanian, Phillip et al. (2016) Low-Cost Peptide Microarrays for Mapping Continuous Antibody Epitopes. Methods Mol Biol 1352:67-83
Prentoe, Jannick; Velázquez-Moctezuma, Rodrigo; Foung, Steven K H et al. (2016) Hypervariable region 1 shielding of hepatitis C virus is a main contributor to genotypic differences in neutralization sensitivity. Hepatology 64:1881-1892
Kong, Leopold; Kadam, Rameshwar U; Giang, Erick et al. (2015) Structure of Hepatitis C Virus Envelope Glycoprotein E1 Antigenic Site 314-324 in Complex with Antibody IGH526. J Mol Biol 427:2617-28
Scull, Margaret A; Shi, Chao; de Jong, Ype P et al. (2015) Hepatitis C virus infects rhesus macaque hepatocytes and simianized mice. Hepatology 62:57-67
Douam, Florian; Gaska, Jenna M; Winer, Benjamin Y et al. (2015) Genetic Dissection of the Host Tropism of Human-Tropic Pathogens. Annu Rev Genet 49:21-45
Winer, Benjamin Y; Ploss, Alexander (2015) Determinants of hepatitis B and delta virus host tropism. Curr Opin Virol 13:109-16

Showing the most recent 10 out of 17 publications