The long-term objective of the proposed research is to study the role and properties of electrical synaptic transmission via gap junctions in the CNS, in particular in the auditory system. The goldfish Mauthner (M-) cell system is ideally suited for these studies since unlike mammalian electrical synapses, the experimental accessibility makes it possible to quantify in vivo changes in junctional conductance that occur under different physiological conditions and to correlate them with anatomical, ultrastructural and molecular analysis. Our progress shows that the conductance of these electrical synapses is under the fine regulatory control of glutamatergic synapses co-localized in the same terminals. Further, our progress also shows that electrical transmission is mediated by Connexin 35 (Cx35), the fish ortholog of the mammalian Connexin 36, suggesting that mammalian electrical synapses could be similarly modulated. This proposal focuses now on understanding the molecular mechanisms underlying changes in junctional conductance. We will investigate if, in analogy to the role of scaffold proteins in chemical synapses, mechanisms of exo/endocytosis involving interactions with the scaffold ZO-1 are necessary for activity-dependent potentiation of junctional conductance.
Aim 1, is to investigate the association and interaction of Cx35 with the scaffold protein ZO-1. The scaffold protein ZO-1 is known to interact with many connexins to regulate their surface expression. Our preliminary results indicate that this protein co-localizes and directly interacts with Cx35 through conserved regions of both Cx35 and Cx36 carboxy-terminus. We propose to characterize direct protein-protein interactions between Cx35 and ZO-1.
Aim 2, investigates the role of the Cx35/ZO-1 association in regulating electrical synaptic transmission. It is based on evidence suggesting the existence of active trafficking of gap junction channels and that potentiation could be prevented by intracellular injections of both botulinum toxin (that block exocytosis) and by peptides that interfere with Cx35/ZO-1 interactions. The proposed research addresses the novel concept that the strength of electrical synapses is dynamically modified by the activity of nearby chemical synapses. ZO-1 could become as a result of the proposed investigations the first regulatory protein identified for electrical transmission. Furthermore, its direct interaction through conserved regions of both Cx35 and Cx36 carboxy-terminus suggests that its function might underlie a fundamental and widespread property of electrical transmission, also relevant to mammalian electrical synapses. This property could be widespread and relevant to pathological conditions such as epilepsy and developmental disorders.

Public Health Relevance

The proposal explores the molecular mechanisms by which chemically mediated synapses, the main form of interneuronal communication in the mammalian brain, regulate the function of gap junction-mediated electrical synapses. Because electrical synapses have been shown to promote coordinated neuronal activity, the existence of such regulation could have profound physiological and pathological implications, contributing to epilepsy and to cognitive (psychiatric) and developmental disorders

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
High Priority, Short Term Project Award (R56)
Project #
2R56DC003186-12A2
Application #
7811671
Study Section
Auditory System Study Section (AUD)
Program Officer
Cyr, Janet
Project Start
1997-01-01
Project End
2011-06-30
Budget Start
2009-07-01
Budget End
2011-06-30
Support Year
12
Fiscal Year
2009
Total Cost
$428,750
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Neurosciences
Type
Schools of Medicine
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Faber, Donald S; Pereda, Alberto E (2018) Two Forms of Electrical Transmission Between Neurons. Front Mol Neurosci 11:427
Nagy, James I; Pereda, Alberto E; Rash, John E (2018) Electrical synapses in mammalian CNS: Past eras, present focus and future directions. Biochim Biophys Acta Biomembr 1860:102-123
Miller, Adam C; Pereda, Alberto E (2017) The electrical synapse: Molecular complexities at the gap and beyond. Dev Neurobiol 77:562-574
Nagy, James I; Pereda, Alberto E; Rash, John E (2017) On the occurrence and enigmatic functions of mixed (chemical plus electrical) synapses in the mammalian CNS. Neurosci Lett :
Haas, Julie S; Greenwald, Corey M; Pereda, Alberto E (2016) Activity-dependent plasticity of electrical synapses: increasing evidence for its presence and functional roles in the mammalian brain. BMC Cell Biol 17 Suppl 1:14
Cachope, Roger; Pereda, Alberto E (2015) Opioids potentiate electrical transmission at mixed synapses on the Mauthner cell. J Neurophysiol 114:689-97
Yao, Cong; Vanderpool, Kimberly G; Delfiner, Matthew et al. (2014) Electrical synaptic transmission in developing zebrafish: properties and molecular composition of gap junctions at a central auditory synapse. J Neurophysiol 112:2102-13
Pereda, Alberto E (2014) Electrical synapses and their functional interactions with chemical synapses. Nat Rev Neurosci 15:250-63
Rash, John E; Curti, Sebastian; Vanderpool, Kimberly G et al. (2013) Molecular and functional asymmetry at a vertebrate electrical synapse. Neuron 79:957-69
Pereda, Alberto E; Curti, Sebastian; Hoge, Gregory et al. (2013) Gap junction-mediated electrical transmission: regulatory mechanisms and plasticity. Biochim Biophys Acta 1828:134-46

Showing the most recent 10 out of 18 publications