The complexity and multifactorial nature of Alzheimer's disease (AD) pose unique challenges for the development of effective therapies. Efforts to target specific AD-related pathways have shown promise in animal studies, only to fail during human trials. There is a pressing need to identify novel therapeutic targets for AD. Apolipoprotein (apo) E4 increases the risk and lowers the age of onset for developing AD in a gene dose- dependent manner. In most clinical studies, apoE4 carriers account for 65-80% of all AD cases, highlighting the importance of apoE4 in AD pathogenesis. Emerging evidence from animal and clinical studies suggest that targeting some of the apoE4's detrimental effects for therapeutic intervention could be useful for treating AD. However, for many of these targets, a systemic validation is needed before further development. Mounting evidence from our lab suggests that hippocampal GABAergic neurotransmission is one such promising target for intervention in the setting of apoE4-positive AD. First, we found that expression of apoE4 in knock-in (KI) mice causes age-dependent impairment of GABAergic interneurons in the hilus of the hippocampus, which correlates with the extent of learning and memory deficits. Second, optogenetic inhibition of hilar GABAergic interneuron activity impairs spatial learning and memory in mice, indicating that hilar GABAergic interneuron impairment can directly cause cognitive deficits. Third, the GABAA receptor potentiator pentobarbital rescues the learning and memory deficits in apoE4-KI mice. Fourth, apoE4 impairs GABAergic interneurons in human iPSC-derived neuronal cultures and in the hippocampal hilus in AD patients. Fifth, hilar transplantation of mouse medial ganglionic eminence (MGE)-derived GABAergic interneuron progenitors restores normal learning and memory in apoE4-KI mice without or with A? accumulation. These results strongly implicate apoE4 in hilar GABAergic interneuron impairment, leading to learning and memory deficits, which could be a therapeutic target for AD. There are different subtypes of GABAergic interneurons in the hippocampal hilus, including those positive for somatostatin, parvalbumin, or neuropeptide Y. Using transgenic Cre driver lines, we will selectively express light-sensitive optogenetic proteins, including channelrhodopsin-2, halorhodopsin, and ArchaerhodopsinT, in these cells to control their activity and thus determine their contributions to normal learning and memory and to apoE4-induced learning and memory deficits in mice. Specifically, we propose to validate the application of optogenetic tools for the manipulation of different hilar GABAergic interneuron subtypes ex vivo and in vivo (Aim 1);to determine the contribution of different subtypes of hilar GABAergic interneurons to apoE4-induced learning and memory deficits using optogenetic tools (Aim 2);and to determine the underlying mechanisms by which hilar transplantation of mouse MGE-derived GABAergic interneuron progenitors restores normal learning and memory in aged apoE4-KI mice using optogenetic tools (Aim 3).

Public Health Relevance

The goal of this proposal is to characterize and validate apoE4-induced GABAergic interneuron impairment as a novel therapeutic target for Alzheimer's disease. Specifically, we will determine the contributions of different hilar GABAergic interneuron subtypes to normal learning and memory and to apoE4-induced learning and memory deficits in mice using optogenetic tools.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Multi-Year Funded Research Project Grant (RF1)
Project #
1RF1AG047655-01
Application #
8710739
Study Section
Special Emphasis Panel (ZAG1-ZIJ-5 (J3))
Program Officer
Wise, Bradley C
Project Start
2014-06-15
Project End
2019-05-31
Budget Start
2014-06-15
Budget End
2019-05-31
Support Year
1
Fiscal Year
2014
Total Cost
$2,148,750
Indirect Cost
$1,023,750
Name
J. David Gladstone Institutes
Department
Type
DUNS #
099992430
City
San Francisco
State
CA
Country
United States
Zip Code
94158
Gillespie, Anna K; Jones, Emily A; Lin, Yuan-Hung et al. (2016) Apolipoprotein E4 Causes Age-Dependent Disruption of Slow Gamma Oscillations during Hippocampal Sharp-Wave Ripples. Neuron 90:740-51
Tong, Leslie M; Yoon, Seo Yeon; Andrews-Zwilling, Yaisa et al. (2016) Enhancing GABA Signaling during Middle Adulthood Prevents Age-Dependent GABAergic Interneuron Decline and Learning and Memory Deficits in ApoE4 Mice. J Neurosci 36:2316-22
Tong, Leslie M; Fong, Helen; Huang, Yadong (2015) Stem cell therapy for Alzheimer's disease and related disorders: current status and future perspectives. Exp Mol Med 47:e151
Knoferle, Johanna; Yoon, Seo Yeon; Walker, David et al. (2014) Apolipoprotein E4 produced in GABAergic interneurons causes learning and memory deficits in mice. J Neurosci 34:14069-78
Huang, Yadong; Mahley, Robert W (2014) Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer's diseases. Neurobiol Dis 72 Pt A:3-12