Red blood cells are an integral part of the cardiovascular system carrying oxygen to the tissues. These red cells normally survive in circulation for only about 120 days at which time they are removed and destroyed. Although many changes occur as young cells become """"""""old"""""""" the cause of these changes has not been identified although most, if not all, could be mediated by increased cellular calcium. We propose to determine whether cellular oxidation and the resulting complexes between oxidation products, particularly hemoglobin, and cytoplasmically accessible cell membrane proteins may be responsible for initiating red cell senescence through increases in intracellular calcium. We further intend to determine the mechanisms by which the increase in free ionic cell calcium is accomplished. Our immediate goal is to understand the mechanism of cell aging with the ultimate goal of improving the survival of banked red cells through deceleration or arrest of the red cell aging process. Cellular oxidation will be accomplished by treating isolated normal human erythrocytes with low concentrations of specific peroxides for short periods of time. Cytosolic free calcium will be measured in peroxide treated and control cells under various experimental conditions using 19F - NMR spectroscopy of the intra-cellular calcium chelator compound BAPTA.

Project Start
Project End
Budget Start
Budget End
Support Year
18
Fiscal Year
1992
Total Cost
Indirect Cost
Name
University of New Mexico
Department
Type
DUNS #
829868723
City
Albuquerque
State
NM
Country
United States
Zip Code
87131
Bharadwaj, D; Mold, C; Markham, E et al. (2001) Serum amyloid P component binds to Fc gamma receptors and opsonizes particles for phagocytosis. J Immunol 166:6735-41
Romero, I R; Morris, C; Rodriguez, M et al. (1998) Inflammatory potential of C-reactive protein complexes compared to immune complexes. Clin Immunol Immunopathol 87:155-62
Tetzloff, S U; Bizzozero, O A (1998) Palmitoylation of proteolipid protein from rat brain myelin using endogenously generated 18O-fatty acids. J Biol Chem 273:279-85
Sanchez, P; Tetzloff, S U; Bizzozero, O A (1998) Veratridine-induced depolarization reduces the palmitoylation of brain and myelin glycerolipids. J Neurochem 70:1448-57
Bryant, J E; Hutchings, K G; Moyzis, R K et al. (1997) Measurement of telomeric DNA content in human tissues. Biotechniques 23:476-8, 480, 482, passim
Melendez, R F; Bizzozero, O A (1996) Palmitoylation of myelin P0 protein is independent of its synthesis and parallels that of phospholipids. J Peripher Nerv Syst 1:34-41
Mold, C; Gurule, C; Otero, D et al. (1996) Complement-dependent binding of C-reactive protein complexes to human erythrocyte CR1. Clin Immunol Immunopathol 81:153-60
Chapin, J E; Davis, L E; Kornfeld, M et al. (1995) Neurologic manifestations of intravascular lymphomatosis. Acta Neurol Scand 91:494-9
Smith, J P; Hicks, P S; Ortiz, L R et al. (1995) Quantitative measurement of muscle strength in the mouse. J Neurosci Methods 62:15-9
Varela, M F; Sansom, C E; Griffith, J K (1995) Mutational analysis and molecular modelling of an amino acid sequence motif conserved in antiporters but not symporters in a transporter superfamily. Mol Membr Biol 12:313-9

Showing the most recent 10 out of 18 publications