Our research efforts will center on the use of mathematical techniques to solve and analyze the complex different and differential equations that arise in the modeling of systems in biology, ecology and physiology. The systems to be studied directly relate to significant problems and issues in the biosciences. The fundamental goal is to use the resulting mathematical results to provide a better understanding of the dynamics of these systems. Particular systems of interest include (but, are not limited to): . periodic diseases (discrete models) . the renal concentrating mechanism . biochemical oscillators . reaction-advection diffusion processes . modeling of dieting . interacting population dynamics Exact, approximate and numerical solutions will be obtained and compared with available data/observations to both understand the particular system being studied and to make predictions concerning its dynamical evolution. The mathematical methods to be used include perturbation (both regular and singular) and asymptotic series, harmonic balance procedures, phase-space analysis, the """"""""theory"""""""" of chaotic systems, and numerical integration. Many of these mathematical tools have originated in previous work by the PI, in particular, the use of harmonic balancing for determining periodic solutions to oscillating systems and non-standard finite difference schemes for calculating numerical solutions to differential equations. Secondary, but also important objectives are to expose both undergraduate and graduate students to an area of research in the biosciences for which they are generally not familiar or knowledgeable and to introduce into the science curriculum an introductory course in mathematical biosciences.

Project Start
2000-09-01
Project End
2001-08-31
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
13
Fiscal Year
2000
Total Cost
$69,492
Indirect Cost
Name
Clark Atlanta University
Department
Type
DUNS #
065325177
City
Atlanta
State
GA
Country
United States
Zip Code
30314
Ifere, Godwin O; Equan, Anita; Gordon, Kereen et al. (2010) Cholesterol and phytosterols differentially regulate the expression of caveolin 1 and a downstream prostate cell growth-suppressor gene. Cancer Epidemiol 34:461-71
Mariam, Yitbarek H; Musin, Ryza N (2008) Transition from moderate to strong hydrogen bonds: its identification and physical bases in the case of O-H...O intramolecular hydrogen bonds. J Phys Chem A 112:134-45
Kimbro, K Sean; Duschene, Kaitlin; Willard, Margeret et al. (2008) A novel gene STYK1/NOK is upregulated in estrogen receptor-alpha negative estrogen receptor-beta positive breast cancer cells following estrogen treatment. Mol Biol Rep 35:23-7
Chu, Qinghui; Pang, Yi (2004) Vibronic structures in the electronic spectra of oligo(phenylene ethynylene): effect of m-phenylene to the optical properties of poly(m-phenylene ethynylene). Spectrochim Acta A Mol Biomol Spectrosc 60:1459-67
Sannigrahi, Biswajit; McGeady, Paul; Khan, Ishrat M (2004) Helical poly(3-methyl-4-vinylpyridine)/amino acid complexes: preparation, characterization, and biocompatibility. Macromol Biosci 4:999-1007
Liang, Sidney; Bu, Xiu R (2002) Tertiary pentyl groups enhance salen titanium catalyst for highly enantioselective trimethylsilylcyanation of aldehydes. J Org Chem 67:2702-4
Vanderveer, Donald; Colon, Marisabel Lebron; Bu, Xiu R (2002) Crystal structure of a chiral Ni complex: (R,R)-N,N'-bis(3-t-butylsalicylidene)-1,2-cyclohexanediaminonickel(II). Anal Sci 18:1283-4
Musey, Paul I; Ibim, Sobrasua M; Talukder, Niranjan K (2002) Development of artificial blood vessels: seeding and proliferation characteristics of endothelial and smooth muscle cells on biodegradable membranes. Ann N Y Acad Sci 961:279-83
Chiang, C F; Okou, D T; Griffin, T B et al. (2001) Green fluorescent protein rendered susceptible to proteolysis: positions for protease-sensitive insertions. Arch Biochem Biophys 394:229-35
Johnson, K P; Rowe, G C; Jackson, B A et al. (2001) Novel antineoplastic isochalcones inhibit the expression of cyclooxygenase 1,2 and EGF in human prostate cancer cell line LNCaP. Cell Mol Biol (Noisy-le-grand) 47:1039-45

Showing the most recent 10 out of 17 publications