Antifreeze proteins (AFPs) are natural antifreeze molecules that have been found in many organisms including fish, insects, plants, bacteria, and fungi. AFPs exhibit great structural diversity, while they are all characterized by their unique ability to depress the freezing point of water without affecting the melting point apparently. The resulting difference between the melting point and the freezing point, referred to as thermal hysteresis (TH), is generally used as a measure of the antifreeze activities of AFPs. AFPs and co-solutes in body-fluids of cold-adapted organisms are responsible for survival in cold environments. Certain small molecule and protein co-solutes can further enhance the antifreeze activity of AFPs, referred to as enhancers, by binding to AFP through ionic interactions, hydrogen bonding, and/or hydrophobic interactions. AFP-based antifreeze systems (AFP plus enhancer) are much more effective and their uses are more environmentally friendly in comparison to conventional antifreezes, making them intriguing alternatives to conventional antifreezes in particular in biomedical fields. The proposed research will investigate the little known AFP- protein systems through determining the cryoprotective effect of an AFP on other proteins as well as the effect of these proteins on the antifreeze activity of the AFP using combined biochemical and biophysical methods. The information on such interplay in the AFP-protein systems would not only further our understanding of biological antifreeze system in cold-adapted organisms, but also lead to the development of effective protective systems for long-term preservation of important biologics in biomedical applications.

Public Health Relevance

The proposed work provides a detailed understanding on the interplay of the partners in the systems of antifreeze proteins and other proteins. Antifreeze protein based systems are intriguing alternatives to conventional antifreezes in biomedical fields. This study would help unravel survival strategy in cold-adapted organisms and lead to rational development of highly efficient cold preservation/antifreeze systems for long-term preservation of important biologics for various biomedical applications.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Continuance Award (SC3)
Project #
2SC3GM086249-12
Application #
10090202
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Bernal, Federico
Project Start
2009-09-30
Project End
2024-08-31
Budget Start
2020-09-23
Budget End
2021-08-31
Support Year
12
Fiscal Year
2020
Total Cost
Indirect Cost
Name
California State University Los Angeles
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
066697590
City
Los Angeles
State
CA
Country
United States
Zip Code
90032
Wen, Xin; Wang, Sen; Duman, John G et al. (2016) Antifreeze proteins govern the precipitation of trehalose in a freezing-avoiding insect at low temperature. Proc Natl Acad Sci U S A 113:6683-8
Wang, Sen; Wen, Xin; DeVries, Arthur L et al. (2014) Molecular recognition of methyl ?-D-mannopyranoside by antifreeze (glyco)proteins. J Am Chem Soc 136:8973-81
Wang, Sen; Wen, Xin; Golen, James A et al. (2013) Antifreeze protein-induced selective crystallization of a new thermodynamically and kinetically less preferred molecular crystal. Chemistry 19:16104-12
Wang, Sen; Amornwittawat, Natapol; Wen, Xin (2012) Thermodynamic Analysis of Thermal Hysteresis: Mechanistic Insights into Biological Antifreezes. J Chem Thermodyn 53:125-130
Wang, Sen; Wen, Xin; Nikolovski, Pavle et al. (2012) Expanding the molecular recognition repertoire of antifreeze polypeptides: effects on nucleoside crystal growth. Chem Commun (Camb) 48:11555-7
Wen, Xin; Wang, Sen; Amornwittawat, Natapol et al. (2011) Interaction of reduced nicotinamide adenine dinucleotide with an antifreeze protein from Dendroides canadensis: mechanistic implication of antifreeze activity enhancement. J Mol Recognit 24:1025-32
Wang, Sen; Amornwittawat, Natapol; Banatlao, Joseph et al. (2009) Hofmeister effects of common monovalent salts on the beetle antifreeze protein activity. J Phys Chem B 113:13891-4
Wang, Sen; Amornwittawat, Natapol; Juwita, Vonny et al. (2009) Arginine, a key residue for the enhancing ability of an antifreeze protein of the beetle Dendroides canadensis. Biochemistry 48:9696-703
Amornwittawat, Natapol; Wang, Sen; Banatlao, Joseph et al. (2009) Effects of polyhydroxy compounds on beetle antifreeze protein activity. Biochim Biophys Acta 1794:341-6