The Stanford Biomedical Informatics (BMI) training program continues to offer MS and PhD degrees to students with an intensive training that prepares them for careers in research. The formal core curriculum trains them in a five part curriculum that features (1) core biomedical informatics, (2) domain biology or medicine (3) computer science, (4) probability and statistics, and (5) ethical, legal, and social issues. The curriculum offers general training in biomedical informatics, appropriate for students whose research subsequently focuses on diverse application areas within biomedicine. The program has particular strength in bioinformatics and clinical translational research. However, Stanford's research milieu provides excellent opportunities for basic informatics research in other areas as well. We are in the 22nd year as an NLM supported training program, with a steady state of about 32 total students. We have produced 102 graduates, 55 of whom were NLM-supported at some period. In this proposal, we request continuing support for the training of fourteen pre-doctoral and four post-doctoral candidates per year, representing a small shift in balance in response to our applicant pool. Most training slots will be used for BMI degree candidates, although we will take advantage of program flexibility to fund a small number of post-MD or Ph.D. candidates who are not BMI degree candidates. We are currently receiving more than 80 applications for 4-8 total spots in our program (a subset of which are NLM supported). We propose to continue our successful training program in the next five years, with an expanded executive committee, increased recruitment of participating faculty, a consulting service to allow students to have direct contact with biomedical researchers, and a continuing plan for increased affirmative action recruitment of women and minority students. The BMI program will therefore continue to produce leaders in academic and industrial biomedical informatics, and will continue to respond to the changing landscape of biomedical research in the information age.
Hollingsworth, Scott A; Dror, Ron O (2018) Molecular Dynamics Simulation for All. Neuron 99:1129-1143 |
Huang, Edmond Y; To, Milton; Tran, Erica et al. (2018) A VCP inhibitor substrate trapping approach (VISTA) enables proteomic profiling of endogenous ERAD substrates. Mol Biol Cell 29:1021-1030 |
Latorraca, Naomi R; Wang, Jason K; Bauer, Brian et al. (2018) Molecular mechanism of GPCR-mediated arrestin activation. Nature 557:452-456 |
Sweeney, Timothy E; Azad, Tej D; Donato, Michele et al. (2018) Unsupervised Analysis of Transcriptomics in Bacterial Sepsis Across Multiple Datasets Reveals Three Robust Clusters. Crit Care Med 46:915-925 |
Koh, Andrew S; Miller, Erik L; Buenrostro, Jason D et al. (2018) Rapid chromatin repression by Aire provides precise control of immune tolerance. Nat Immunol 19:162-172 |
Marafino, Ben J; Dudley, R Adams; Shah, Nigam H et al. (2018) Accurate and interpretable intensive care risk adjustment for fused clinical data with generalized additive models. AMIA Jt Summits Transl Sci Proc 2017:166-175 |
Van Eps, Ned; Altenbach, Christian; Caro, Lydia N et al. (2018) Gi- and Gs-coupled GPCRs show different modes of G-protein binding. Proc Natl Acad Sci U S A 115:2383-2388 |
Schuler, Alejandro; Wulf, David A; Lu, Yun et al. (2018) The Impact of Acute Organ Dysfunction on Long-Term Survival in Sepsis. Crit Care Med 46:843-849 |
Haynes, Winston A; Tomczak, Aurelie; Khatri, Purvesh (2018) Gene annotation bias impedes biomedical research. Sci Rep 8:1362 |
Sylman, Joanna L; Boyce, Hunter B; Mitrugno, Annachiara et al. (2018) A Temporal Examination of Platelet Counts as a Predictor of Prognosis in Lung, Prostate, and Colon Cancer Patients. Sci Rep 8:6564 |
Showing the most recent 10 out of 262 publications