There is a continuing and urgent need for greater understanding of virus infections and, consequently, a need for a robust virology research community in the U.S and the world. The purpose of the Virology Training Program at the University of Iowa is to train young scientists to be productive members of that research community. The Virology Training Grant at the University of Iowa helps in two ways. First, it fosters the rigorous training of PhD students in the study of virology. Second, it promotes interaction among students and faculty interested in virology across the University of Iowa. By providing stipend support and travel funds for graduate students, the Training Grant will facilitate the recruitment of students who are interested in virology. By establishing curriculum requirements that include research and literature seminars for the virology community and the collaborative teaching of virology training courses the Training Grant will promote interaction in the larger virology community at the University of Iowa and beyond. There are ten Virology Training Grant faculty members who represent a wide variety of research interests from study of very basic processes in the molecular and cellular biology of virus replication, to study of host animal responses to virus infection, to study of the most efficient mechanisms for gene delivery by viruses. We seek support for five predoctoral graduate students for two years between their second and fourth years of study.

Public Health Relevance

Virus infections have critical public health relevance because: (i) They are a major cause of human disease, (ii) Their intimate relationship with host cells makes them useful tools for studying normal cellular functions, (iii) They are vehicles for gene delivery in remedial gene therapy and vaccine development. There is a need to train scientists who can meet the public health threat and exploit opportunities presented by viruses.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Institutional National Research Service Award (T32)
Project #
2T32AI007533-11
Application #
7693057
Study Section
Microbiology and Infectious Diseases B Subcommittee (MID)
Program Officer
Mcsweegan, Edward
Project Start
1998-09-01
Project End
2014-08-31
Budget Start
2009-09-01
Budget End
2010-08-31
Support Year
11
Fiscal Year
2009
Total Cost
$100,729
Indirect Cost
Name
University of Iowa
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Brouillette, Rachel B; Phillips, Elisabeth K; Patel, Radhika et al. (2018) TIM-1 Mediates Dystroglycan-Independent Entry of Lassa Virus. J Virol 92:
Balasubramaniam, Muthukumar; Zhou, Jing; Addai, Amma et al. (2018) PF74 Inhibits HIV-1 Integration by Altering The Composition of the Preintegration Complex. J Virol :
Welch, Jennifer L; Kaddour, Hussein; Schlievert, Patrick M et al. (2018) Semen exosomes promote transcriptional silencing of HIV-1 by disrupting NF-kB/Sp1/Tat circuitry. J Virol :
Grunewald, Matthew E; Fehr, Anthony R; Athmer, Jeremiah et al. (2018) The coronavirus nucleocapsid protein is ADP-ribosylated. Virology 517:62-68
Staber, J M; Pollpeter, M J; Anderson, C-G et al. (2017) Long-term correction of hemophilia A mice following lentiviral mediated delivery of an optimized canine factor VIII gene. Gene Ther 24:742-748
Lennemann, Nicholas J; Herbert, Andrew S; Brouillette, Rachel et al. (2017) Vesicular stomatitis virus pseudotyped with Ebola virus glycoprotein serves as a protective, non-infectious vaccine against Ebola virus challenge in mice. J Virol :
DeLeon, Orlando; Hodis, Hagit; O'Malley, Yunxia et al. (2017) Accurate predictions of population-level changes in sequence and structural properties of HIV-1 Env using a volatility-controlled diffusion model. PLoS Biol 15:e2001549
Athmer, Jeremiah; Fehr, Anthony R; Grunewald, Matthew et al. (2017) In Situ Tagged nsp15 Reveals Interactions with Coronavirus Replication/Transcription Complex-Associated Proteins. MBio 8:
Bangalore-Prakash, Pradeep; Stunz, Laura L; Mambetsariev, Nurbek et al. (2017) The oncogenic membrane protein LMP1 sequesters TRAF3 in B-cell lymphoma cells to produce functional TRAF3 deficiency. Blood Adv 1:2712-2723
Das, Anshuman; Hirai-Yuki, Asuka; González-López, Olga et al. (2017) TIM1 (HAVCR1) Is Not Essential for Cellular Entry of Either Quasi-enveloped or Naked Hepatitis A Virions. MBio 8:

Showing the most recent 10 out of 56 publications