(from the application): This proposal represents a collaborative interplay between the Department of Orthopaedics and the Division of Rheumatic Diseases at Case Western Reserve University School of Medicine for training of predoctoral candidates in the field of orthopaedic bioengineering and academically-oriented graduate physicians/postdoctoral trainees (MD, PhD and MD/PhD) in specifically targeted areas of rheumatology and orthopaedics to include immunology, bone/cartilage transplantation, bone/cartilage metabolism, tissue biomechanics and osteoarthritis. Training occurs through intensive participation in a research project and conferences/seminars in which basic science research as well as the application of research to clinical problems are implemented. Training co-directors are assisted by a Steering Committee which formally reviews the program and progress of trainees on a regular basis throughout the project. Faculty sponsor interactions amongst the various participating clinical and basic science departments foster interactive trainee research. Regular laboratory meetings, formal lectures, grand rounds, seminars and conjoint conferences, as well as participation in appropriate graduate courses augment bench research experience. The goal of the training program continues to be development of academic professionals capable of making significant contri-butions in laboratory investigations in the field of musculoskeletal disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32AR007505-15
Application #
2909763
Study Section
Arthritis and Musculoskeletal and Skin Diseases Special Grants Review Committee (AMS)
Program Officer
Panagis, James S
Project Start
1985-07-01
Project End
2001-04-30
Budget Start
1999-05-01
Budget End
2001-04-30
Support Year
15
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Case Western Reserve University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
077758407
City
Cleveland
State
OH
Country
United States
Zip Code
44106
Graczyk, Emily L; Resnik, Linda; Schiefer, Matthew A et al. (2018) Home Use of a Neural-connected Sensory Prosthesis Provides the Functional and Psychosocial Experience of Having a Hand Again. Sci Rep 8:9866
Nguyen, Minh K; Jeon, Oju; Dang, Phuong N et al. (2018) RNA interfering molecule delivery from in situ forming biodegradable hydrogels for enhancement of bone formation in rat calvarial bone defects. Acta Biomater 75:105-114
Seo, Jungmok; Shin, Jung-Youn; Leijten, Jeroen et al. (2018) High-throughput approaches for screening and analysis of cell behaviors. Biomaterials 153:85-101
Whitney, G Adam; Kean, Thomas J; Fernandes, Russell J et al. (2018) Thyroxine Increases Collagen Type II Expression and Accumulation in Scaffold-Free Tissue-Engineered Articular Cartilage. Tissue Eng Part A 24:369-381
Ferguson, James W; Devarajan, Mahima; Atit, Radhika P (2018) Stage-specific roles of Ezh2 and Retinoic acid signaling ensure calvarial bone lineage commitment. Dev Biol 443:173-187
Manzano, Givenchy W; Fort, Brian P; Dubyak, George R et al. (2018) Wear Particle-induced Priming of the NLRP3 Inflammasome Depends on Adherent Pathogen-associated Molecular Patterns and Their Cognate Toll-like Receptors: An In Vitro Study. Clin Orthop Relat Res 476:2442-2453
Brill, N A; Naufel, S N; Polasek, K et al. (2018) Evaluation of high-density, multi-contact nerve cuffs for activation of grasp muscles in monkeys. J Neural Eng 15:036003
Ferguson, James; Devarajan, Mahima; DiNuoscio, Gregg et al. (2018) PRC2 Is Dispensable in Vivo for ?-Catenin-Mediated Repression of Chondrogenesis in the Mouse Embryonic Cranial Mesenchyme. G3 (Bethesda) 8:491-503
Sirimamilla, P Abhiram; Rimnac, Clare M; Furmanski, Jevan (2018) Viscoplastic crack initiation and propagation in crosslinked UHMWPE from clinically relevant notches up to 0.5mm radius. J Mech Behav Biomed Mater 77:73-77
Rivera-Delgado, Edgardo; Djuhadi, Ashley; Danda, Chaitanya et al. (2018) Injectable liquid polymers extend the delivery of corticosteroids for the treatment of osteoarthritis. J Control Release 284:112-121

Showing the most recent 10 out of 120 publications