This program provides interdisciplinary training in muscle biology for pre- and postdoctoral fellows. The program emphasizes the functional, structural and molecular properties of skeletal, cardiac and smooth muscle, and the modification of these properties in various disease states. Our 17 faculty members come from 3 basic science departments (Biochemistry and Molecular Biology, Pharmacology and Experimental Therapeutics and Physiology) and from three clinical departments (Medicine, Orthopedics and Surgery) at the School of Medicine, University of Maryland Baltimore (UMB). Affiliate faculty also come from the Department of Mechanical Engineering and the Department of Mathematics at our sister campus, University of Maryland Baltimore County and from Morgan State University. Trainees are drawn from all of the participating departments and from our interdepartmental PhD Programs. Reflecting our diversity of faculty backgrounds, the training offered ranges from the molecular biological determinants of muscle development and molecular aspects of structure and function of muscle proteins through cell biological aspects of muscle cytoskeleton and matrix, biophysical and physiological analysis of individual muscle cell function and biomechanical properties of whole muscles and muscular organs, and the effects of muscle disease at all these levels of examination. Our faculty is nationally and internationally recognized in the areas of calcium control of muscle function and muscle cytoskeleton and matrix. Our students will receive training in these and in a variety of related areas, with emphasis on the use of several complimentary techniques to approach each question under investigation. The major didactic aspect of the predoctoral training is two one-semester interdisciplinary courses on muscle that are already regularly offered by the program faculty and which have been well received by past student groups and are audited by all postdoctoral trainees. Program activities include an annual on campus Mini-Retreat which includes trainee posters and oral presentations and a well-known muscle researcher as program visitor and keynote speaker, a semiannual Wade Memorial lectureship and lunch meetings for all trainees, as well as training in professional development and grant writing, and in the responsible conduct of research. We will continue at our present level of 5 predoctoral trainees and 6 postdoctoral trainees throughout the renewal period. Entering predoctoral trainees will continue to have a solid background in biology, chemistry and/or physics, excellent GRE scores and strong letters of recommendation. Incoming postdoctoral trainees will have completed a solid PhD thesis and have strong letters of recommendation. Trainees from this program will be prepared to bring a wide range of approaches to bear on answering basic questions in muscle biology and on the bases for muscle diseases and their possible treatment and eventual cure. This program therefore serves a national need for competent multi-disciplinary investigators of muscle function and disease.

Public Health Relevance

Muscular dystrophies and other primary diseases of skeletal muscle, as well as muscle dysfunction and the resulting impaired mobility occurring as a secondary effect of immobility, aging or other disease states, remain important public health issues. This program will train pre- and postdoctoral fellows in an interdisciplinary approach to the study of muscle and muscle disease at the molecular, cellular, tissue, organ and whole animal levels. Our trainees will provide an important future resource in the search for remedies and eventual cures for a variety of primary and secondary diseases of muscle.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32AR007592-25
Application #
9924246
Study Section
Arthritis and Musculoskeletal and Skin Diseases Special Grants Review Committee (AMS)
Program Officer
Boyce, Amanda T
Project Start
1996-05-01
Project End
2021-04-30
Budget Start
2020-05-01
Budget End
2021-04-30
Support Year
25
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Maryland Baltimore
Department
Biochemistry
Type
Schools of Medicine
DUNS #
188435911
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Banks, Quinton; Pratt, Stephen Joseph Paul; Iyer, Shama Rajan et al. (2018) Optical Recording of Action Potential Initiation and Propagation in Mouse Skeletal Muscle Fibers. Biophys J 115:2127-2140
Collier, Alyssa F; Gumerson, Jessica; Lehtimäki, Kimmo et al. (2018) Effect of Ibuprofen on Skeletal Muscle of Dysferlin-Null Mice. J Pharmacol Exp Ther 364:409-419
Ackermann, Maegen A; Shriver, Marey; Perry, Nicole A et al. (2018) Correction: Obscurins: Goliaths and Davids Take over Non-Muscle Tissues. PLoS One 13:e0190842
Melville, Zephan; Aligholizadeh, Ehson; McKnight, Laura E et al. (2017) X-ray crystal structure of human calcium-bound S100A1. Acta Crystallogr F Struct Biol Commun 73:215-221
Valencia, Ana P; Iyer, Shama R; Spangenburg, Espen E et al. (2017) Impaired contractile function of the supraspinatus in the acute period following a rotator cuff tear. BMC Musculoskelet Disord 18:436
Hernández-Ochoa, Erick O; Banks, Quinton; Schneider, Martin F (2017) Acute Elevated Glucose Promotes Abnormal Action Potential-Induced Ca2+ Transients in Cultured Skeletal Muscle Fibers. J Diabetes Res 2017:1509048
Desmond, Patrick F; Labuza, Amanda; Muriel, Joaquin et al. (2017) Interactions between small ankyrin 1 and sarcolipin coordinately regulate activity of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA1). J Biol Chem 292:10961-10972
Bittle, Gregory J; Kaushal, Sunjay (2017) Recreating the inferior vena cava with a patient-specific biodegradable conduit. J Thorac Cardiovasc Surg 153:933
Robison, Patrick; Sussan, Thomas E; Chen, Hegang et al. (2017) Impaired calcium signaling in muscle fibers from intercostal and foot skeletal muscle in a cigarette smoke-induced mouse model of COPD. Muscle Nerve 56:282-291
Iyer, Shama R; Shah, Sameer B; Valencia, Ana P et al. (2017) Altered nuclear dynamics in MDX myofibers. J Appl Physiol (1985) 122:470-481

Showing the most recent 10 out of 144 publications