This training program prepares predoctoral graduate students and postdoctoral researchers for careers in the application of physics to the medical diagnosis and treatment of cancer. Available research specializations encompass all areas of physics support for patient treatment, disease diagnosis, and basic physics research applied to cancer. Trainers in the Department of Medical Physics, Radiology, Human Oncology (Radiation Oncology), Oncology, Engineering Physics, and Bio-medical Engineering maintain a broad spectrum of research collaborations with other clinical and basic science researchers. Translational, team driven research includes radiation therapy and radiation biology with the Department of Oncology, traditional x-ray, digital, CT, MRI, ultrasound, and PET imaging with the Department of Radiology, radiation physics with the Departments of Physics and Nuclear Engineering. Trainees are intimate participants in these research programs as collaborators, publishing joint research articles, and performing as investigators in extramurally funded grants and contracts. Extensive faculty contact provides leadership and supervision. Beyond research activities and minor subject requirements, predoctoral trainees as graduate students in Medical Physics take at least twenty-seven credits supportive of medical physics training and oriented towards their research specialization. Postdoctoral trainees are encouraged to broaden and deepen their academic training by auditing- appropriate courses. Trainees give seminars, attend colloquia, present research results at local, national, and international meetings, and co-author articles and reports. An annual training grant symposium provides additional opportunity for trainees to present research results to the Medical Physics and collaborating faculty. In this way trainees of this program are well prepared to assume leadership positions as researchers and academicians in the application of physics to cancer treatment, diagnosis and prevention.

Public Health Relevance

This training program prepares graduate students and postdoctoral trainees in radiological sciences for careers in cancer research. Researchers in this field continue to have a high impact on the diagnosis and treatment of cancer, leading major advances particularly in the areas of medical imaging, image guided intervention and radiation therapy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Institutional National Research Service Award (T32)
Project #
5T32CA009206-35
Application #
8510583
Study Section
Subcommittee G - Education (NCI)
Program Officer
Damico, Mark W
Project Start
1978-08-01
Project End
2014-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
35
Fiscal Year
2013
Total Cost
$530,529
Indirect Cost
$34,153
Name
University of Wisconsin Madison
Department
Physics
Type
Schools of Medicine
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Guerrero, Quinton W; Feltovich, Helen; Rosado-Mendez, Ivan M et al. (2018) Quantitative Ultrasound Biomarkers Based on Backscattered Acoustic Power: Potential for Quantifying Remodeling of the Human Cervix during Pregnancy. Ultrasound Med Biol :
Zhan, Yonghua; Ehlerding, Emily B; Shi, Sixiang et al. (2018) Intrinsically Zirconium-89-Labeled Manganese Oxide Nanoparticles for In Vivo Dual-Modality Positron Emission Tomography and Magnetic Resonance Imaging. J Biomed Nanotechnol 14:900-909
Ehlerding, Emily B; Grodzinski, Piotr; Cai, Weibo et al. (2018) Big Potential from Small Agents: Nanoparticles for Imaging-Based Companion Diagnostics. ACS Nano 12:2106-2121
Lee, Hye Jin; Ehlerding, Emily B; Cai, Weibo (2018) Antibody-Based Tracers for PET/SPECT Imaging of Chronic Inflammatory Diseases. Chembiochem :
Ehlerding, Emily B; Ferreira, Carolina A; Aluicio-Sarduy, Eduardo et al. (2018) 86/90Y-Based Theranostics Targeting Angiogenesis in a Murine Breast Cancer Model. Mol Pharm 15:2606-2613
Wei, Weijun; Ni, Dalong; Ehlerding, Emily B et al. (2018) PET Imaging of Receptor Tyrosine Kinases in Cancer. Mol Cancer Ther 17:1625-1636
Lao, Patrick J; Handen, Ben L; Betthauser, Tobey J et al. (2018) Alzheimer-Like Pattern of Hypometabolism Emerges with Elevated Amyloid-? Burden in Down Syndrome. J Alzheimers Dis 61:631-644
Betthauser, Tobey J; Cody, Karly A; Zammit, Matthew D et al. (2018) In vivo characterization and quantification of neurofibrillary tau PET radioligand [18F]MK-6240 in humans from Alzheimer's disease dementia to young controls. J Nucl Med :
Lao, Patrick J; Handen, Ben L; Betthauser, Tobey J et al. (2018) Imaging neurodegeneration in Down syndrome: brain templates for amyloid burden and tissue segmentation. Brain Imaging Behav :
Ni, Dalong; Ehlerding, Emily B; Cai, Weibo (2018) Multimodality Imaging Agents with PET as the Fundamental Pillar. Angew Chem Int Ed Engl :

Showing the most recent 10 out of 331 publications