This application seeks support for years 26-30 of a T32 grant for post-doctoral research training for MD, PhD and MD/PhD scientists. The training centers in the Department of Pathology and Immunology at Washington University. We have a faculty of 29 distributed among seven departments, but with highest representation in Pathology and Immunology. The faculty is made up of a highly collegial group of immunologists and cell/molecular biologists who have interacted heavily for several years. The research of much of the faculty is on various aspects of immunology and host resistance, but also includes heavy emphasis on the molecular basis of cell activation (for example our projects focus on host responses to tumors and viruses, lymphocyte differentiation and activation, cell biology and biochemistry of antigen processing, the molecular basis and analysis of cell interaction molecules, regulation of DNA cycle). There are two types of trainees-(a) those with either MD or MD/PhD degrees who seek a serious, in- depth experience in research following their clinical training in Pathology or (b) fellows with a graduate or MD degree, not associated with Pathology clinical training, who have an interest in the research done by any of the faculty members: we have a yearly applicant pool of about 200 qualified individuals who compete for a total of 80 postdoctoral slots among the 29 laboratories. Of these, ten/year are supported by this training grant. We request renewal of our ten training positions. A Steering Committee of 6 senior faculty members oversees the training and is responsible for the selection of trainees. Training includes a 2-3 year period of full-time laboratory research, where the trainee is exposed to the latest approaches in cell and molecular biology (e.g., transgenic and knockout mice, peptide chemistry, DNA technology). Part of the training includes laboratory meetings and reports, participation in weekly seminars, training in research ethics and opportunities for courses in Cancer Biology. Of the 53 trainees that have been supported by this Program in the last 10 years, 98% continue in research. Forty-seven percent of our trainees supported during the last 10-year period are still in training while 53% have completed the program. Of the latter, 78% hold faculty positions, mostly in Pathology. This successful training program is thus producing the next generation of basic and clinician scientists who will elucidate many of the heretofore unknown mechanisms that lead to cancer development and/or discover novel therapeutic strategies that can be used to treat neoplastic disease.

Public Health Relevance

The Training Program in Cancer Biology at Washington University in St. Louis seeks continued support to maintain a highly successful mechanism that provides research training to talented doctors and scientists who wish to pursue a career in cancer research. The program faculty are highly accomplished medical scientists performing state of the art cancer related research in a premier world-class medical research institution. The Program has produced many of today's bright stars in cancer research and continued support will insure that this pipeline continues to produce expertly trained scientists who commit themselves to curing major human diseases such as cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Institutional National Research Service Award (T32)
Project #
5T32CA009547-27
Application #
8277190
Study Section
Subcommittee G - Education (NCI)
Program Officer
Damico, Mark W
Project Start
1986-07-01
Project End
2016-04-30
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
27
Fiscal Year
2012
Total Cost
$556,168
Indirect Cost
$42,638
Name
Washington University
Department
Pathology
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Ulrich, Jason D; Ulland, Tyler K; Mahan, Thomas E et al. (2018) ApoE facilitates the microglial response to amyloid plaque pathology. J Exp Med 215:1047-1058
Song, Wilbur M; Joshita, Satoru; Zhou, Yingyue et al. (2018) Humanized TREM2 mice reveal microglia-intrinsic and -extrinsic effects of R47H polymorphism. J Exp Med 215:745-760
Kulkarni, Hrishikesh S; Elvington, Michelle L; Perng, Yi-Chieh et al. (2018) Intracellular C3 Protects Human Airway Epithelial Cells from Stress-Associated Cell Death. Am J Respir Cell Mol Biol :
Robinette, M L; Cella, M; Telliez, J B et al. (2018) Jak3 deficiency blocks innate lymphoid cell development. Mucosal Immunol 11:50-60
Cortez, Victor S; Ulland, Tyler K; Cervantes-Barragan, Luisa et al. (2017) SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-? signaling. Nat Immunol 18:995-1003
Ulland, Tyler K; Song, Wilbur M; Huang, Stanley Ching-Cheng et al. (2017) TREM2 Maintains Microglial Metabolic Fitness in Alzheimer's Disease. Cell 170:649-663.e13
Kimmey, Jacqueline M; Campbell, Jessica A; Weiss, Leslie A et al. (2017) The impact of ISGylation during Mycobacterium tuberculosis infection in mice. Microbes Infect 19:249-258
Chatterjee, Srirupa; Luthra, Priya; Esaulova, Ekaterina et al. (2017) Structural basis for human respiratory syncytial virus NS1-mediated modulation of host responses. Nat Microbiol 2:17101
Josefsdottir, Kamilla S; Baldridge, Megan T; Kadmon, Claudine S et al. (2017) Antibiotics impair murine hematopoiesis by depleting the intestinal microbiota. Blood 129:729-739
Robinette, Michelle L; Bando, Jennifer K; Song, Wilbur et al. (2017) IL-15 sustains IL-7R-independent ILC2 and ILC3 development. Nat Commun 8:14601

Showing the most recent 10 out of 130 publications