PROGRAM ABSTRACT The Cancer Biology Training Program (CBTP) at the University of Chicago is a multi-disciplinary program whose core mission is to train graduate students and post-doctoral researchers in different areas of cancer research, including but not limited to fundamental molecular mechanisms in cancer biology, systems approaches, reactivation of developmental programs and use of model organisms, organ site biology, cancer therapeutics and cancer population genetics. In addition, our trainees receive robust grounding in hypothesis building and testing, the ethics of scientific endeavor, teaching skills and an understanding of how their work contributes to human well-being and disease management in society. Over the past 5 years of training grant support, our cancer biology program has firmly established itself as an effective and vibrant training program, training the next generation of cancer biologists needed to meet the health cares challenges arising from increasing cancer incidence in society. Our 43 faculty trainers have maintained an outstanding publication record and have been recognized by many prestigious honors. Despite a challenging funding climate, our faculty have increased direct funding of their research in 2013 compared to 2008. Strong institutional support has also allowed us to recruit talented new faculty whose expertise has increased the research opportunities for our trainees in exciting new areas of cancer biology and science. Significantly, we continue to receive an ever-increasing number of qualified applicants to our program. We are also pleased that we have been able to make significant increases in numbers of under-represented minorities recruited to our program, and these trainees are amongst our most dynamic. We have evaluated our program rigorously over the past 5 years to improve yet further our curriculum to meet the changing face of cancer research in this decade. In particular, we have developed new aspects of the curriculum, with altered demands in formal coursework, as well as introduced advances in personal development opportunities for trainees. The program has also come under new leadership with Dr. Kay Macleod taking over from Dr. Geof Greene as Director of this training grant. As with all previous leadership changes to the program, continuity remains thanks to Dr. Macleod having worked closely with Dr. Greene in the past 5 years and Dr. Greene remaining part of the leadership structure. Importantly, Dr. Macleod brings renewed energy and ideas to keep the program purposeful and goal-oriented in its training objectives. In summary, with our expert body of faculty trainers and talented group of young trainees, plus a constantly improving curriculum and training environment, our program has been highly successful in terms of trainee productivity and career outcomes. Given these strength of our program and our sustained ability to recruit increased numbers of qualified, outstanding trainees, we suggest that the program needs and merits retaining the number of pre-doctoral (8) and post-doctoral (3) slots in this training grant renewal.

Public Health Relevance

The Cancer Biology Training Grant at the University of Chicago trains the next generation of cancer researchers with the scientific skills, knowledge and innovative ideas to tackle the growing challenges of cancer prevention, detection and treatment. This is of particular importance for Public Health as cancer remains one of the deadliest diseases nationwide killing more than half a million people in the United States each year. With an ageing US population due to reduced mortality from other diseases, cancer is likely to further increase in incidence over the coming decades and the demand for highly skilled individuals as part of an expert Biomedical Research Workforce will also increase to meet this growing challenge to Public Health.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Institutional National Research Service Award (T32)
Project #
2T32CA009594-26
Application #
8741191
Study Section
Subcommittee G - Education (NCI)
Program Officer
Damico, Mark W
Project Start
1989-09-22
Project End
2019-06-30
Budget Start
2014-09-08
Budget End
2015-06-30
Support Year
26
Fiscal Year
2014
Total Cost
$357,072
Indirect Cost
$17,585
Name
University of Chicago
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Mowers, Erin E; Sharifi, Marina N; Macleod, Kay F (2018) Functions of autophagy in the tumor microenvironment and cancer metastasis. FEBS J 285:1751-1766
Sample, Ashley; Zhao, Baozhong; Wu, Chunli et al. (2018) The Autophagy Receptor Adaptor p62 is Up-regulated by UVA Radiation in Melanocytes and in Melanoma Cells. Photochem Photobiol 94:432-437
Rosenberg, Jillian; Huang, Jun (2018) CD8+ T Cells and NK Cells: Parallel and Complementary Soldiers of Immunotherapy. Curr Opin Chem Eng 19:9-20
Sample, Ashley; He, Yu-Ying (2018) Mechanisms and prevention of UV-induced melanoma. Photodermatol Photoimmunol Photomed 34:13-24
Matson, Vyara; Fessler, Jessica; Bao, Riyue et al. (2018) The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359:104-108
Johnson, Marianna B; Hoffmann, Joscelyn N; You, Hannah M et al. (2018) Psychosocial Stress Exposure Disrupts Mammary Gland Development. J Mammary Gland Biol Neoplasia 23:59-73
Fessenden, Tim B; Beckham, Yvonne; Perez-Neut, Mathew et al. (2018) Dia1-dependent adhesions are required by epithelial tissues to initiate invasion. J Cell Biol 217:1485-1502
Singhal, Hari; Greene, Marianne E; Zarnke, Allison L et al. (2018) Progesterone receptor isoforms, agonists and antagonists differentially reprogram estrogen signaling. Oncotarget 9:4282-4300
Bhanvadia, Raj R; VanOpstall, Calvin; Brechka, Hannah et al. (2018) MEIS1 and MEIS2 Expression and Prostate Cancer Progression: A Role For HOXB13 Binding Partners in Metastatic Disease. Clin Cancer Res 24:3668-3680
Qiang, Lei; Sample, Ashley; Shea, Christopher R et al. (2017) Autophagy gene ATG7 regulates ultraviolet radiation-induced inflammation and skin tumorigenesis. Autophagy 13:2086-2103

Showing the most recent 10 out of 113 publications