): The continuation of the Cancer Biology Training Program is proposed at the University of Michigan. The central goal of this program is to train exceptional junior investigators to address fundamental biological problems related to human cancer. The Cancer Biology Training Program is both multidisciplinary and interdepartmental, drawing its strength from the interdisciplinary cooperation of 34 faculty members from ten basic science and clinical departments within The University of Michigan Medical School: Anatomy and Cell Biology, Biological Chemistry, Dermatology, Human Genetics, Internal Medicine, Microbiology & Immunology, Otolaryngology, Pathology, Pharmacology, and Radiation Oncology. The Program draws further strength from its association with the University of Michigan Comprehensive Cancer Center. The Program trains both predoctoral and postdoctoral scholars, with research opportunities focusing on four specific areas of research: Cancer Genetics and Gene Therapy, Molecular Oncology, Tumor Immunology, and Tumor Metastasis and Extracellular Matrix. Postdoctoral fellows will have completed a Ph.D. degree in one of the physical or biological sciences, or have completed an M.D. degree. Predoctoral students will comprise a subset of students already accepted into established graduate programs in the Departments of Anatomy and Cell Biology, Biological Chemistry, Human Genetics, Microbiology & Immunology, Pathology or Pharmacology. All trainees must have a significant interest in pursuing a career in some aspect of cancer- related research. This interdepartmental training program is dove- tailed into existing departmental programs while providing a cohesive, high quality training experience in cancer biology. Predoctoral trainees will be expected to graduate to outstanding postdoctoral positions, while postdoctoral trainees should assume leading academic and research positions.
Schofield, Heather K; Tandon, Manuj; Park, Min-Jung et al. (2018) Pancreatic HIF2? Stabilization Leads to Chronic Pancreatitis and Predisposes to Mucinous Cystic Neoplasm. Cell Mol Gastroenterol Hepatol 5:169-185.e2 |
Hawkins, Allegra G; Basrur, Venkatesha; da Veiga Leprevost, Felipe et al. (2018) The Ewing Sarcoma Secretome and Its Response to Activation of Wnt/beta-catenin Signaling. Mol Cell Proteomics 17:901-912 |
Kamran, Neha; Alghamri, Mahmoud S; Nunez, Felipe J et al. (2018) Current state and future prospects of immunotherapy for glioma. Immunotherapy 10:317-339 |
Djuric, Zora; Bassis, Christine M; Plegue, Melissa A et al. (2018) Colonic Mucosal Bacteria Are Associated with Inter-Individual Variability in Serum Carotenoid Concentrations. J Acad Nutr Diet 118:606-616.e3 |
Kamran, Neha; Chandran, Mayuri; Lowenstein, Pedro R et al. (2018) Immature myeloid cells in the tumor microenvironment: Implications for immunotherapy. Clin Immunol 189:34-42 |
Haase, Santiago; Garcia-Fabiani, María Belén; Carney, Stephen et al. (2018) Mutant ATRX: uncovering a new therapeutic target for glioma. Expert Opin Ther Targets 22:599-613 |
Morgan, Meredith A; Canman, Christine E (2018) Replication Stress: An Achilles' Heel of Glioma Cancer Stem-like Cells. Cancer Res 78:6713-6716 |
Thomas, Tina T; Chukkapalli, Sahiti; Van Noord, Raelene A et al. (2018) Utilization of Ultrasound Guided Tissue-directed Cellular Implantation for the Establishment of Biologically Relevant Metastatic Tumor Xenografts. J Vis Exp : |
Rosselli-Murai, Luciana K; Yates, Joel A; Yoshida, Sei et al. (2018) Loss of PTEN promotes formation of signaling-capable clathrin-coated pits. J Cell Sci 131: |
Pinatti, L M; Walline, H M; Carey, T E (2018) Human Papillomavirus Genome Integration and Head and Neck Cancer. J Dent Res 97:691-700 |
Showing the most recent 10 out of 185 publications