The Mount Sinai School of Medicine (MSSM) proposes to continue a highly successful Cancer Biology training program for predoctoral fellows and postdoctoral fellows. This program reflects a major expansion of cancer research at MSSM, which has experienced 2.5-fold growth in NCI funding since initiation of this program almost a decade ago. Its leadership has extensive experience in cancer research mentoring and a well-documented commitment to graduate education and training. This NCI Training Program catalyzed the recent establishment of Cancer Biology as a formal training area within the Graduate School. The program encompasses a laboratory-based, multidisciplinary program in cancer biology with a growing and dynamic faculty. Five predoctoral trainees would continue to be supported by the training program, which has demonstrated the ability to attract and develop a cadre of outstanding PhD and MD/PhD students in cancer focused research. The postdoctoral component of this program, which is completing its first cycle, also attracts outstanding trainees. We propose to merge our more translationally focused NCI training program, which had 5 positions, with the current basic research focused component possessing 5 positions. In this renewal application, we request 8 postdoctoral positions in the first year with incremental increases to 10 training positions. This administrative consolidation should foster even greater interactions between laboratory trainees and those clinical fellows, who embark on a period of intensive laboratory research within this program. The training faculty comprises 40 preceptors from 9 departments and 4 Institutes throughout Mount Sinai. Of these faculty, 63% have peer-reviewed support from funding agencies for cancer-related studies. The curriculum for the predoctoral and postdoctoral trainees involves some common elements including advanced course work in both basic and clinical cancer biology. All trainees also participate in regular conferences, which further expose trainees to clinical aspects of cancer. There are important specific training elements for each component as well. There is a rigorous evaluation and selection process, and-the program is both cognizant of and actively involved in minority recruitment. This training program combines research in the biology of cancer with a curriculum that challenges trainees to consider how their research may be translated into improvements in the diagnosis and treatment of cancer. The trainees work closely with faculty drawn from throughout Mount Sinai ensuring that this research is both comprehensive in scope and related to practical issues faced by physicians in preventing and treating cancer.

Public Health Relevance

Cancer biology research within this training program is aimed at elucidating the molecular mechanisms responsible for initiation and progression of human cancer as well as research directly aimed at improving the ability to treat this terrible disease. Our training faculty has made discoveries that have led to new therapies for cancer, which is responsible for extensive morbidity and more than 560,000 expected deaths in 2008 in the United States.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Institutional National Research Service Award (T32)
Project #
2T32CA078207-11
Application #
7631616
Study Section
Subcommittee G - Education (NCI)
Program Officer
Lim, Susan E
Project Start
1999-07-20
Project End
2014-06-30
Budget Start
2009-07-01
Budget End
2010-06-30
Support Year
11
Fiscal Year
2009
Total Cost
$500,693
Indirect Cost
Name
Icahn School of Medicine at Mount Sinai
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
D'Avola, Delia; Villacorta-Martin, Carlos; Martins-Filho, Sebastiao N et al. (2018) High-density single cell mRNA sequencing to characterize circulating tumor cells in hepatocellular carcinoma. Sci Rep 8:11570
Sonoshita, Masahiro; Scopton, Alex P; Ung, Peter M U et al. (2018) A whole-animal platform to advance a clinical kinase inhibitor into new disease space. Nat Chem Biol 14:291-298
Labgaa, Ismail; Villacorta-Martin, Carlos; D'Avola, Delia et al. (2018) A pilot study of ultra-deep targeted sequencing of plasma DNA identifies driver mutations in hepatocellular carcinoma. Oncogene 37:3740-3752
Bane, Octavia; Hectors, Stefanie J; Wagner, Mathilde et al. (2018) Accuracy, repeatability, and interplatform reproducibility of T1 quantification methods used for DCE-MRI: Results from a multicenter phantom study. Magn Reson Med 79:2564-2575
Yadav, Rajesh K; Jablonowski, Carolyn M; Fernandez, Alfonso G et al. (2017) Histone H3G34R mutation causes replication stress, homologous recombination defects and genomic instability in S. pombe. Elife 6:
Kenny, T C; Hart, P; Ragazzi, M et al. (2017) Selected mitochondrial DNA landscapes activate the SIRT3 axis of the UPRmt to promote metastasis. Oncogene 36:4393-4404
Kenny, Timothy C; Germain, Doris (2017) mtDNA, Metastasis, and the Mitochondrial Unfolded Protein Response (UPRmt). Front Cell Dev Biol 5:37
Chernyavskaya, Yelena; Mudbhary, Raksha; Zhang, Chi et al. (2017) Loss of DNA methylation in zebrafish embryos activates retrotransposons to trigger antiviral signaling. Development 144:2925-2939
Craig, Amanda J; von Felden, Johann; Villanueva, Augusto (2017) Molecular profiling of liver cancer heterogeneity. Discov Med 24:117-125
Lin, Su-Jiun; O'Connell, Matthew J (2017) DNA Topoisomerase II modulates acetyl-regulation of cohesin-mediated chromosome dynamics. Curr Genet 63:923-930

Showing the most recent 10 out of 96 publications