This is the first renewal application for the UC Davis postdoctoral T32 program in Oncogenic Signals and Chromosome Biology. This training program takes advantage of the integrated strength of the Molecular Oncology Program at the UC Davis NCI-designated Cancer Center and the exceptional expertise and training records of the participating faculty members in oncogenic signals and chromosome biology. The program involves 30 trainers, including three National Academy members, who also form the backbone of the Molecular Oncology Program. Every trainer maintains an active, extramurally funded research program. The participating faculty members represent diverse disciplines but share a common topical focus. A strong clinical research component at the Cancer Center facilitates the translational aspect of this program, with further support from the UC Davis Clinical and Translational Science Center. Over the first funding period, the training program attracted an outstanding cohort of 12 highly talented postdoctoral fellows to UC Davis. Remarkably, five of these fellows have already moved on to very competitive, individual fellowships from NIH, DOD, and CBCRP to continue their training in cancer biology. The training program has developed an innovative and effective array of curricular activities that provide formal training in oncogenic signals and chromosome biology, education in the responsible conduct of research, and individual mentoring. A rich and diverse array of seminars, conferences, discussion groups, workshops, and retreats provide opportunities to present research progress and broaden the training experience beyond the trainer's laboratory. The training program added significant value above supporting trainees, as it serviced a cohort of 117, including 39 training grant eligible, postdoctoral fellows, who actively participate in some training grant activities. An effective administrative structure is in place that is further refined in this renewal. A director and a co-director administer the program, with guidance by an active executive committee. Each member of the executive committee actively maintains a specific portfolio to enhance the program activities. To further develop the training program, we have created a four-member Advisory Board. The two external advisors are directors of comparable cancer-oriented training programs, and one also serves on the External Advisory Board of the UC Davis Cancer Center with responsibility for the Molecular Oncology Program. The two internal members are highly experienced mentors and include the Executive Associate Dean of the School of Medicine, who is an authority in training and mentoring. The training program aims to prepare our trainees for independent research careers in academic or research institutions, biotechnology industries, or government laboratories.

Public Health Relevance

This is the first renewal application of the UC Davis T32 postdoctoral training grant in Oncogenic Signals and Chromosome Biology, which is associated with the Molecular Oncology Program of the NCI-designated UC Davis Cancer Center. The program has developed a thriving and innovative training environment as well as an effective administrative infrastructure that has been very successful in attracting 12 highly qualified postdoctoral fellows to UC Davis. The next funding period aims to build upon this success and to further refine the program to prepare our postdoctoral trainees for independent research careers in academic or research institutions, biotechnology industries, or government laboratories.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Institutional National Research Service Award (T32)
Project #
2T32CA108459-06
Application #
8149781
Study Section
Subcommittee G - Education (NCI)
Program Officer
Lim, Susan E
Project Start
2004-07-01
Project End
2016-08-31
Budget Start
2011-09-01
Budget End
2012-08-31
Support Year
6
Fiscal Year
2011
Total Cost
$286,946
Indirect Cost
Name
University of California Davis
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Rowson-Hodel, A R; Wald, J H; Hatakeyama, J et al. (2018) Membrane Mucin Muc4 promotes blood cell association with tumor cells and mediates efficient metastasis in a mouse model of breast cancer. Oncogene 37:197-207
Harris, Todd R; Kodani, Sean; Rand, Amy A et al. (2018) Celecoxib Does Not Protect against Fibrosis and Inflammation in a Carbon Tetrachloride-Induced Model of Liver Injury. Mol Pharmacol 94:834-841
Lucchesi, Christopher A; Zhang, Jin; Ma, Buyong et al. (2018) Disruption of the Rbm38-eIF4E complex with a synthetic peptide Pep8 increases p53 expression. Cancer Res :
Rand, Amy A; Helmer, Patrick O; Inceoglu, Bora et al. (2018) LC-MS/MS Analysis of the Epoxides and Diols Derived from the Endocannabinoid Arachidonoyl Ethanolamide. Methods Mol Biol 1730:123-133
Rand, Amy A; Barnych, Bogdan; Morisseau, Christophe et al. (2017) Cyclooxygenase-derived proangiogenic metabolites of epoxyeicosatrienoic acids. Proc Natl Acad Sci U S A 114:4370-4375
Barnych, Bogdan; Rand, Amy A; Cajka, Tomas et al. (2017) Synthesis of cyclooxygenase metabolites of 8,9-epoxyeicosatrienoic acid (EET): 11- and 15-hydroxy 8,9-EETs. Org Biomol Chem 15:4308-4313
Yang, Hee Jung; Zhang, Jin; Yan, Wensheng et al. (2017) Ninjurin 1 has two opposing functions in tumorigenesis in a p53-dependent manner. Proc Natl Acad Sci U S A 114:11500-11505
Scharadin, Tiffany M; He, Wei; Yiannakou, Yianni et al. (2017) Synthesis and biochemical characterization of EGF receptor in a water-soluble membrane model system. PLoS One 12:e0177761
Chen, Kuang-Yui; Knoepfler, Paul S (2016) To CRISPR and beyond: the evolution of genome editing in stem cells. Regen Med 11:801-816
Zhang, Jin; Lucchesi, Christopher; Chen, Xinbin (2016) A new function for p53 tetramerization domain in cell fate control. Cell Cycle 15:2854-2855

Showing the most recent 10 out of 47 publications