We propose a pre-doctoral training program providing an educational and research environment for graduate students at the interface of neurosciences and engineering. The training program will emphasize rigorous education in biological sciences in general and neurosciences in particular. The course work will range from molecular and cellular neurosciences to systems and clinical neurosciences. In addition, the student training will include rigorous coursework in mathematical, computational and engineering systems. The students in the program will have a wealth of research opportunities at our institution, both in basic research on the nervous system, and in clinical aspects of disease diagnosis and therapy. The engineering research opportunities include problems in instrumentation development, signal and information processing, imaging and computational neurosciences. The program is strengthened by the availability of a highly qualified applicant pool, very selective admission processes, and a very strong interest in the field among the applicants. Our institution provides a commensurately high quality training environment through a demanding curriculum and a large number of laboratories that have high levels of peer reviewed funding and outstanding laboratory resources. A unique element of this program is the participation of research faculty from both the basic sciences and the clinical sciences. Finally, the training program will emphasize the freedom to pursue interdisciplinary and collaborative research and encourage participation by students from diverse disciplines. Although our program so far has a good track record of recruiting, retaining and training these candidates there are a number of institutional efforts underway to further stimulate participation from minority candidates. Overall, this training program focuses on recruiting and selecting high quality candidates and providing them rigorous and comprehensive academic and research training. Our long-term goal is to foster an educational, training and research environment that will produce future scientists and educators who will make strong impact on basic and clinical neurosciences. ? ?
Showing the most recent 10 out of 16 publications