We propose to establish an integrative broad-based graduate training program in neuroimaging to significantly enhance the education and training of the next generation of scientific and technical leaders in this important emerging field. The primary objectives of the program are two-fold: first, it will provide integrative training to graduate students in engineering and quantitative sciences in order that they have a broad understanding of neuroscience and are capable of developing innovative neuroimaging techniques;second, it will provide training to neuroscientists so that they will have i n-depth exposure to the imaging sciences. We believe it will benefit both students and faculty from multiple disciplines. Quantitatively oriented students will be exposed to a wealth of challenging and real problems in neuroimaging to address important neuroscience questions, while biologically oriented students will gain expertise in new quantitative methods and imaging techniques. The proposal incorporates the strengths, resources, and administrative structures of several existing graduate programs in engineering and quantitative sciences as well as neurosciences, with an interdisciplinary faculty with diverse research interests, to provide a new paradigm in graduate education. The proposed program will combine graduate training in existing degree programs in Biomedical Engineering, Computer Science, Electrical Engineering, Neuroscience, and Psychology at the University of Minnesota. The pre-doctoral fellows will be trained across a variety of tools including special interdisciplinary coursework, research rotations, dual thesis advisors, special seminars and symposia and unique training opportunities. An advisory system will help guide students through the program. The trainees will receive instructions in the responsible conduct of research. Special effort will be made to recruit traditionally underrepresented students. On completion, the trainees will be well prepared for research career in academia, industry and government. The broader impacts include advancing our understanding of the brain, cross-fertilization of the disciplines, and establishing a new model for interdisciplinary training integrating neuroscience with imaging science. The successful completion of the proposed training program promises to change the landscape of the future neuroimaging field.
Showing the most recent 10 out of 38 publications