It clearly emerges from """"""""Vision Research; A National Plan"""""""" that vision research embraces every discipline in the biological sciences as well as cognitive sciences and clinical research. Participation by the NEI in the NIH Roadmap reflects recognition by vision scientists of the importance of the interdisciplinary approach to research, and of rapid translation of findings in basic research to clinical care. Accordingly, the next generation of vision scientists will need to develop their scientific skills within an environment that stresses cutting edge science, interdisciplinary cooperation, an understanding of the visual system, and exposure to clinical ophthalmology. This training program, while broad in the scope of participating scientific disciplines, is focused on creating at the University of Pittsburgh a training environment that will favor interactions and collaborations among vision scientists, and involve predoctoral students and postdoctoral fellows in interdisciplinary approaches to understanding the visual system and ocular diseases. Although this T32 application focuses on training of basic scientists, our trainees will have frequent interactions with clinical ophthalmologists who will serve as mentors, lecturers in our didactic vision course, and close interactions with physician-scientists through course work, seminars, and data clubs. Our T32 training program will draw graduate students from the Immunology, Molecular Virology and Microbiology, Neuroscience, Cell Biology and Molecular Physiology, Human Genetics, and Bioengineering graduate training programs. These programs will provide the structure and basic curriculum, whereas the T32 training program will provide specialized training in vision research. The proposed program will also provide a structure for training of postdoctoral fellows in vision research that will coordinate with the significant support structure already in place at the university. We will strive to attract the brightest students and postdocs with the goals of providing 1) a basic understanding of the anatomy, physiology, and diseases of the eye; 2) appreciation and utilization of the unique anatomical and physiological characteristics of the eye; and 3) awareness of the strengths and limitations of available animal models for ocular diseases. ? ? ? ?
Showing the most recent 10 out of 46 publications