This application requests the renewal of the Cellular and Molecular Biology Umbrella Training Program (T32 GM007067) in the Division of Biological and Biomedical Sciences at Washington University. The objective of the grant is to provide rigorous, interdisciplinary training in cell and molecular biology to a diverse cohort of students y providing support for 25 funded positions in years two and three of graduate school among students in four PhD programs - the Developmental, Regenerative and Stem Cell Biology Program, the Molecular Cell Biology Program, the Molecular Genetics and Genomics Program, and the Microbiology and Microbial Pathogenesis Program. Our program holds long-standing commitments to interdisciplinary training, cutting-edge research, and career development. Its organizational structure is designed to maintain effective communication and cooperation among the faculty and steering committees of the four PhD programs and to foster student and faculty interactions that span programmatic and departmental boundaries. Its educational mission is to ground students in the basic concepts and methodologies of cell and molecular biology and to train them to think critically and to write and speak effectively. We seek to evolve our program to keep pace with the ever-changing nature of basic research by helping our students pursue fundamental questions in cell and molecular biology. New initiatives aimed at accomplishing our mission include: 1) the introduction of forums that provide critical training in scientific presentation, 2) the implementation of a Bioinformatics Bootcamp, 3) the seamless integration of the CMB T32 program with a new IMSD R25 training program, 4) the creation of an Annual CMB Program Mini-Symposium, 5) the start of an evening Career Panel Discussion co- sponsored by the CMB and IMSD programs, 6) the genesis of two novel student-run career development organizations that provide short-term experiences in the biotechnology business and science policy, and 7) an ongoing process focused on streamlining graduate training in order to increase student productivity and decrease time to degree. Through these initiatives, we seek to enable our students to pursue careers at the vanguard of scientific research, education, and outreach by helping them establish a broad-based scientific foundation of knowledge and network of colleagues as they initiate their scientific career. In this effort, our guiding philosophy is to extend all successful program elements to as many students as soon as possible in order to maximize the training of all our students and thus the future impact of our students on society.

Public Health Relevance

Most human diseases arise due to disruptions in basic cellular and molecular processes caused by mutations in one's DNA or the presence of a pathogen in one's body. Our program trains students in the core concepts and methods of cell and molecular biology, preparing them to uncover basic insight into the cell and molecular processes that normally control cell growth and development but that when perturbed can lead to diseased states. With better knowledge of these processes we can improve our ability to detect, treat, and defeat many crippling human diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
2T32GM007067-42
Application #
8931411
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Gindhart, Joseph G
Project Start
1975-07-01
Project End
2021-06-30
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
42
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Washington University
Department
Genetics
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Chen, Jiakun; Castelvecchi, Gina D; Li-Villarreal, Nanbing et al. (2018) Atypical Cadherin Dachsous1b Interacts with Ttc28 and Aurora B to Control Microtubule Dynamics in Embryonic Cleavages. Dev Cell 45:376-391.e5
Burclaff, Joseph; Mills, Jason C (2018) Plasticity of differentiated cells in wound repair and tumorigenesis, part I: stomach and pancreas. Dis Model Mech 11:
Willet, Spencer G; Lewis, Mark A; Miao, Zhi-Feng et al. (2018) Regenerative proliferation of differentiated cells by mTORC1-dependent paligenosis. EMBO J 37:
Radyk, Megan D; Burclaff, Joseph; Willet, Spencer G et al. (2018) Metaplastic Cells in the Stomach Arise, Independently of Stem Cells, via Dedifferentiation or Transdifferentiation of Chief Cells. Gastroenterology 154:839-843.e2
Crofts, Terence S; Wang, Bin; Spivak, Aaron et al. (2018) Shared strategies for ?-lactam catabolism in the soil microbiome. Nat Chem Biol 14:556-564
Yokoyama, Christine C; Baldridge, Megan T; Leung, Daisy W et al. (2018) LysMD3 is a type II membrane protein without an in vivo role in the response to a range of pathogens. J Biol Chem 293:6022-6038
Mayer, Allyson L; Zhang, Yiming; Feng, Emily H et al. (2018) Enhanced Hepatic PPAR? Activity Links GLUT8 Deficiency to Augmented Peripheral Fasting Responses in Male Mice. Endocrinology 159:2110-2126
Huynh, Jeremy P; Lin, Chih-Chung; Kimmey, Jacqueline M et al. (2018) Bhlhe40 is an essential repressor of IL-10 during Mycobacterium tuberculosis infection. J Exp Med 215:1823-1838
Arthur, Laura L; Djuranovic, Sergej (2018) PolyA tracks, polybasic peptides, poly-translational hurdles. Wiley Interdiscip Rev RNA :e1486
Higgins, Cassandra B; Zhang, Yiming; Mayer, Allyson L et al. (2018) Hepatocyte ALOXE3 is induced during adaptive fasting and enhances insulin sensitivity by activating hepatic PPAR?. JCI Insight 3:

Showing the most recent 10 out of 267 publications