The Duke University Program in Cell and Molecular Biology (CMB) provides an entry portal for PhD training in biological sciences, with the objective of training students for careers in science-related professions. CMB provides an interdisciplinary core curriculum that exposes students to diverse topics before selecting their final PhD program. Students select the topics of greatest interest in a modular core class format that reduces class size to maximize interaction with faculty instructors. Teaching is largely based on critical readin of primary literature, supplemented by training in various quantitative skills and coaching in the design and presentation of research proposals. The core course is complemented by elective courses in many areas of concentration. The program features a laboratory rotation system that allows students to participate in the research in each of three well-equipped laboratories of their choice before selecting an advisor. Students may apply and be admitted directly to the University Program in Cell and Molecular Biology. Prior to the second year of study at Duke, students choose the program in which they will earn the Ph.D, from among the following: Biochemistry, Biology, Cell Biology, Computational Biology and Bioinformatics, Genetics and Genomics, Immunology, Molecular Cancer Biology, Molecular Genetics and Microbiology, Neurobiology, Pathology, or Pharmacology.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM007184-43
Application #
9298663
Study Section
NIGMS Initial Review Group (TWD)
Program Officer
Salazar, Desiree Lynn
Project Start
1975-07-01
Project End
2020-06-30
Budget Start
2017-07-01
Budget End
2018-06-30
Support Year
43
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Duke University
Department
Genetics
Type
Schools of Medicine
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Mortensen, Richard D; Moore, Regan P; Fogerson, Stephanie M et al. (2018) Identifying Genetic Players in Cell Sheet Morphogenesis Using a Drosophila Deficiency Screen for Genes on Chromosome 2R Involved in Dorsal Closure. G3 (Bethesda) 8:2361-2387
Barish, Scott; Li, Qingyun; Pan, Jia W et al. (2017) Transcriptional profiling of olfactory system development identifies distal antenna as a regulator of subset of neuronal fates. Sci Rep 7:40873
Muroyama, Andrew; Lechler, Terry (2017) Microtubule organization, dynamics and functions in differentiated cells. Development 144:3012-3021
Cao, Jingli; Wang, Jinhu; Jackman, Christopher P et al. (2017) Tension Creates an Endoreplication Wavefront that Leads Regeneration of Epicardial Tissue. Dev Cell 42:600-615.e4
Zhu, Yafeng; Engström, Pär G; Tellgren-Roth, Christian et al. (2017) Proteogenomics produces comprehensive and highly accurate protein-coding gene annotation in a complete genome assembly of Malassezia sympodialis. Nucleic Acids Res 45:2629-2643
Xu, Guoyong; Greene, George H; Yoo, Heejin et al. (2017) Global translational reprogramming is a fundamental layer of immune regulation in plants. Nature 545:487-490
Sosa-Pagán, Jason O; Iversen, Edwin S; Grandl, Jörg (2017) TRPV1 temperature activation is specifically sensitive to strong decreases in amino acid hydrophobicity. Sci Rep 7:549
Pirozzi, Christopher J; Carpenter, Austin B; Waitkus, Matthew S et al. (2017) Mutant IDH1 Disrupts the Mouse Subventricular Zone and Alters Brain Tumor Progression. Mol Cancer Res 15:507-520
Courtney, David G; Kennedy, Edward M; Dumm, Rebekah E et al. (2017) Epitranscriptomic Enhancement of Influenza A Virus Gene Expression and Replication. Cell Host Microbe 22:377-386.e5
Martin, Angelical S; Abraham, Dennis M; Hershberger, Kathleen A et al. (2017) Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich's ataxia cardiomyopathy model. JCI Insight 2:

Showing the most recent 10 out of 292 publications