The scale of biological studies is rapidly evolving and biological phenomena are now observed at both super-high resolution and with genome- and organism- wide perspectives. To rise to these challenges, we must train the new generation of students to develop a broad and interdisciplinary knowledge of modern biology and experimental approaches in a highly collaborative environment. The training program in Molecules, Cells, and Organisms (MCO) is a cross- departmental doctoral training program located in the Faculty of Arts and Sciences at the Cambridge Campus of Harvard University. This highly innovative program establishes the foundation for students to become the next- generation biologists. MCO faculty mentors represent all fields of modern biology, from biophysics, structural biology and microbiology, to developmental and regenerative biology, neurobiology and genomics. Collaborating departments include Molecular and Cellular Biology, Chemistry and Chemical Biology, Organismic and Evolutionary Biology, Stem Cell and Regenerative Biology, and Physics. Through its structure of core course requirements, quantitative biology courses, journal club, nanocourses, lab rotations, seminars, hands-on model systems workshops, scientific colloquia and retreats, the MCO program exposes its trainees to the full scope of research options available to modern biologists today, and helps them develop outstanding reasoning skills and creativity, as well as oral and written communication. As the advanced field of biological analysis is now attracting scientists from all disciplines, the MCO program is designed to meet the challenge of training that combines the methods of chemistry, physics, mathematics and informatics with new concepts of cellular and molecular biology.

Public Health Relevance

The proposed training program is designed to provide both the breadth and depth of didactic and research training necessary to prepare life scientists for this new era of interdisciplinary and collaborative research and discovery.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
3T32GM007598-41S1
Application #
9901823
Study Section
NIGMS Initial Review Group (TWD)
Program Officer
Salazar, Desiree Lynn
Project Start
1978-07-01
Project End
2020-06-30
Budget Start
2019-07-01
Budget End
2020-06-30
Support Year
41
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Harvard University
Department
Microbiology/Immun/Virology
Type
Schools of Arts and Sciences
DUNS #
082359691
City
Cambridge
State
MA
Country
United States
Zip Code
02138
Gutu, Andrian; Chang, Frederick; O'Shea, Erin K (2018) Dynamical localization of a thylakoid membrane binding protein is required for acquisition of photosynthetic competency. Mol Microbiol 108:16-31
Kuo, James; Stirling, Finn; Lau, Yu Heng et al. (2018) Synthetic genome recoding: new genetic codes for new features. Curr Genet 64:327-333
Kang, Hyuckjoon; Jung, Youngsook L; McElroy, Kyle A et al. (2017) Bivalent complexes of PRC1 with orthologs of BRD4 and MOZ/MORF target developmental genes in Drosophila. Genes Dev 31:1988-2002
Wang, Eddie; Hunter, Craig P (2017) SID-1 Functions in Multiple Roles To Support Parental RNAi in Caenorhabditis elegans. Genetics 207:547-557
Koppel, Nitzan; Maini Rekdal, Vayu; Balskus, Emily P (2017) Chemical transformation of xenobiotics by the human gut microbiota. Science 356:
Wzorek, Joseph S; Lee, James; Tomasek, David et al. (2017) Membrane integration of an essential ?-barrel protein prerequires burial of an extracellular loop. Proc Natl Acad Sci U S A 114:2598-2603
Bisson-Filho, Alexandre W; Hsu, Yen-Pang; Squyres, Georgia R et al. (2017) Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 355:739-743
Bendesky, Andres; Kwon, Young-Mi; Lassance, Jean-Marc et al. (2017) The genetic basis of parental care evolution in monogamous mice. Nature 544:434-439
Vong, Minh; Ludington, Jacob G; Ward, Honorine D et al. (2017) Complete cryspovirus genome sequences from Cryptosporidium parvum isolate Iowa. Arch Virol 162:2875-2879
McElroy, Kyle A; Jung, Youngsook L; Zee, Barry M et al. (2017) upSET, the Drosophila homologue of SET3, Is Required for Viability and the Proper Balance of Active and Repressive Chromatin Marks. G3 (Bethesda) 7:625-635

Showing the most recent 10 out of 73 publications