This program is for predoctoral training of biological science PhD students for research careers in Cellular and Molecular Biology. This interdisciplinary program involves students and 44 faculty members primarily from the Divisions of Biology & Biological Engineering and of Chemistry & Chemical Engineering but also from Divisions of Geology and Engineering. It is a continuation of a training program supported at Caltech for the past 35 years by NIH. Subjects of special emphasis within Cellular and Molecular Biology include genetics and genomics, regulation of gene expression, signal transduction, eukaryotic cell biology, systems biology, synthetic biological circuits, biopolymers, and protein and cell structure. Interaction between the Divisions is evidenced by students who, although earning their PhD in one Division, carry out their thesis research mentored by a faculty member of another Division; by joint courses; by a less-formal interaction including research collaboration, and by interdisciplinary graduate programs in Biochemistry & Molecular Biophysics and in BioEngineering. The major components of the training activities are: 1) each student's individual research program, guided by faculty members and carried out within a group of other students and postdoctoral fellows having related interests; 2) core graduate courses including courses in bioinformatics and writing; 3) preparation for candidacy examinations; 4) formal and informal seminars and group meetings; 5) a course in responsible conduct of research, and 6) a research seminar during which CMB students present their own research. Predoctoral trainees are admitted to graduate study in each option based on highly selective admissions criteria, especially high quantitative aptitude and strong motivation for research. Trainees will be selected from admitted students, and will be those who have a primary interest in research in Cellular and Molecular Biology. Trainees are expected to pursue research careers that require training in Cellular and Molecular Biology; the superb record of our past trainees supports this expectation. Facilities are located in a complex of adjacent buildings. Multi-user facilities include cell sorting, biological imaging including cryoelectron microscopy, NMR and mass spectrometry, monoclonal antibody production, high throughput DNA sequencing, animal care and production of transgenic mice.

Public Health Relevance

Cellular and Molecular Biology will continue to underlie the major advances in understanding of human health and disease that can be expected in the next decades. Young researchers trained in this area will make substantial contributions to human welfare. We will help train the next generation of cell and molecular biologists, those who make fundamental, mechanistic insights using both classis and cutting edge methodology and technology borrowing appropriately from a variety of scientific and engineering disciplines.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM007616-40
Application #
9534098
Study Section
NIGMS Initial Review Group (TWD)
Program Officer
Salazar, Desiree Lynn
Project Start
1978-07-01
Project End
2019-06-30
Budget Start
2018-07-01
Budget End
2019-06-30
Support Year
40
Fiscal Year
2018
Total Cost
Indirect Cost
Name
California Institute of Technology
Department
Type
Schools of Arts and Sciences
DUNS #
009584210
City
Pasadena
State
CA
Country
United States
Zip Code
91125
Lewis, Russell D; Garcia-Borràs, Marc; Chalkley, Matthew J et al. (2018) Catalytic iron-carbene intermediate revealed in a cytochrome c carbene transferase. Proc Natl Acad Sci U S A 115:7308-7313
Xu, Chen; Han, Arthur; Reisman, Sarah E (2018) An Oxidative Dearomatization Approach To Prepare the Pentacyclic Core of Ryanodol. Org Lett 20:3793-3796
Saladi, Shyam M; Javed, Nauman; Müller, Axel et al. (2018) A statistical model for improved membrane protein expression using sequence-derived features. J Biol Chem 293:4913-4927
Wang, Han; Park, Heenam; Liu, Jonathan et al. (2018) An Efficient Genome Editing Strategy To Generate Putative Null Mutants in Caenorhabditis elegans Using CRISPR/Cas9. G3 (Bethesda) 8:3607-3616
Petersen, Philip; Tikhomirov, Grigory; Qian, Lulu (2018) Information-based autonomous reconfiguration in systems of interacting DNA nanostructures. Nat Commun 9:5362
Choi, Harry M T; Schwarzkopf, Maayan; Fornace, Mark E et al. (2018) Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development 145:
Lin, Daniel H; Correia, Ana R; Cai, Sarah W et al. (2018) Structural and functional analysis of mRNA export regulation by the nuclear pore complex. Nat Commun 9:2319
Oberhofer, Georg; Ivy, Tobin; Hay, Bruce A (2018) Behavior of homing endonuclease gene drives targeting genes required for viability or female fertility with multiplexed guide RNAs. Proc Natl Acad Sci U S A 115:E9343-E9352
Chadwick, Grayson L; Hemp, James; Fischer, Woodward W et al. (2018) Convergent evolution of unusual complex I homologs with increased proton pumping capacity: energetic and ecological implications. ISME J 12:2668-2680
McAvoy, Camille Z; Siegel, Alex; Piszkiewicz, Samantha et al. (2018) Two distinct sites of client protein interaction with the chaperone cpSRP43. J Biol Chem 293:8861-8873

Showing the most recent 10 out of 280 publications