The aim of this predoctoral training program in Genetics and Cell Biology is to train scientists to conduct research and prepare for careers in modern molecular genetics and cell biology and, in general, in the biomedical sciences. This program represents the merger of two existing successful training programs, """"""""Genetics of Prokaryotic and Eukaryotic Organisms"""""""" with """"""""Cell and Molecular Biology,"""""""" which recognizes how they have operated to a considerable extent in the past. The new training program will bring together individuals who are studying central problems in genetics and cell biology, including regulation of the cell division cycle, control of DNA distribution in mitotic and meiotic cells, protein trafficking, and cytoskeletal organization using the tools of genetics and biochemistry. These studies exploit a wide range of systems, including bacteria, yeast, nematodes, zebrafish, and humans. The goals of the program are accomplished through coursework and other activities in genetics and cell biology and related areas and through the student's research. The features of our training program that are especially attractive to incoming students are (a) a large number of active, excellent laboratories from which students can choose for their thesis research, (b) a laboratory rotation system, which provides meaningful research experience in different laboratories, (c) an excellent set of courses that enables students with little prior training in genetics and cell biology to acquire a solid foundation in these areas, (d) tutorial training with faculty on how to present a seminar, (e) a highly collegial and interactive atmosphere at UCSF, (f) a high faculty to student ratio, and (g) an awareness that training graduate students is important to the UCSF faculty.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM007810-23
Application #
6498410
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Rhoades, Marcus M
Project Start
1979-07-01
Project End
2006-06-30
Budget Start
2002-07-01
Budget End
2003-06-30
Support Year
23
Fiscal Year
2002
Total Cost
$476,865
Indirect Cost
Name
University of California San Francisco
Department
Biochemistry
Type
Schools of Medicine
DUNS #
073133571
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Liang, Samantha I; van Lengerich, Bettina; Eichel, Kelsie et al. (2018) Phosphorylated EGFR Dimers Are Not Sufficient to Activate Ras. Cell Rep 22:2593-2600
Borges, Adair L; Zhang, Jenny Y; Rollins, MaryClare F et al. (2018) Bacteriophage Cooperation Suppresses CRISPR-Cas3 and Cas9 Immunity. Cell 174:917-925.e10
Hu, Jennifer L; Todhunter, Michael E; LaBarge, Mark A et al. (2018) Opportunities for organoids as new models of aging. J Cell Biol 217:39-50
Eichel, Kelsie; Jullié, Damien; Barsi-Rhyne, Benjamin et al. (2018) Catalytic activation of ?-arrestin by GPCRs. Nature 557:381-386
Zurita Rendón, Olga; Fredrickson, Eric K; Howard, Conor J et al. (2018) Vms1p is a release factor for the ribosome-associated quality control complex. Nat Commun 9:2197
Lin, Athena; Makushok, Tatyana; Diaz, Ulises et al. (2018) Methods for the Study of Regeneration in Stentor. J Vis Exp :
Leon, Lina M; Mendoza, Senén D; Bondy-Denomy, Joseph (2018) How bacteria control the CRISPR-Cas arsenal. Curr Opin Microbiol 42:87-95
Sorrells, Trevor R; Johnson, Amanda N; Howard, Conor J et al. (2018) Intrinsic cooperativity potentiates parallel cis-regulatory evolution. Elife 7:
Eichel, Kelsie; von Zastrow, Mark (2018) Subcellular Organization of GPCR Signaling. Trends Pharmacol Sci 39:200-208
Laurie, Matthew T; White, Corin V; Retallack, Hanna et al. (2018) Functional Assessment of 2,177 U.S. and International Drugs Identifies the Quinoline Nitroxoline as a Potent Amoebicidal Agent against the Pathogen Balamuthia mandrillaris. MBio 9:

Showing the most recent 10 out of 102 publications