The mission of the UCLA-Caltech MSTP is to educate and train outstanding physician-scientists. To fulfill this mission, our current goals are to 1) recruit exceptionally bright and accomplished students who exhibit unusual passion for scientific knowledge and a life-long commitment to research, medicine, service, and leadership; 2) help guide admitted students toward outstanding training environments that encourage individual thinking and provide tools for development into accomplished physician-scientists; 3) provide a comprehensive support system to meet trainees' needs; and 4) enhance physician-scientist diversity by playing an increasingly prominent role in guiding the career development of current and future students from under-represented ethnic groups and disadvantaged backgrounds through mentoring and outreach. To accomplish these major goals as effectively as possible, the UCLA-Caltech MSTP is led by two equal Co-Directors, four Associate Directors, and a strong administrative team, all of whom are deeply committed to the Program. The Program is structured for an average of eight years of combined research and clinical training. Our integrated problem-based medical school curriculum emphasizes flexibility and is particularly well suited for MSTP students because it provides increased time for independent scientific exploration and encourages trainees to pursue research projects that will advance current knowledge of disease etiology, diagnosis, and treatment. For Ph.D. training, students choose mentors affiliated with a broad array of UCLA and Caltech graduate programs, most frequently in genetics & genomics, immunology, cell & developmental biology, neuroscience, bioinformatics, bioengineering, or our newly instituted social sciences track. A recent milestone achievement of our Program was the recent 20th anniversary of the affiliation between UCLA and Caltech into a joint MSTP (1997) for the mutual benefit of these preeminent campuses and our trainees. A second remarkable celebratory achievement will be the upcoming centennial of UCLA becoming a UC campus (1919) and its amazing rise to a world-ranked institution in research, education, and service in under 100 years of existence. A prominent goal of UCLA?s Centennial Campaign is to raise $4 billion, one-third of which is earmarked for research. Despite a competitive funding climate, the UCLA- Caltech MSTP is in a period of substantial growth because of generous institutional support from the David Geffen School of Medicine at UCLA and from Caltech. This has permitted an increase in the size of the Program, with 107 current students. The MSTP benefits tremendously from substantial improvements and expansion in physical facilities and research capabilities at UCLA and Caltech, from the strong financial health of both universities, and from the recruitment of many outstanding new faculty members to our campuses.

Public Health Relevance

The mission of the UCLA-Caltech Medical Scientist Training Program is to promote the training of outstanding physician-scientists. The goal is to transform the future of clinical medicine by educating a cadre of physicians who will engage in both clinical care and biomedical research. Such an integration of clinical medicine and scientific research is likely to lead to an improved understanding of human disease and to the discovery of effective new cures for disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
2T32GM008042-36A1
Application #
9633856
Study Section
NIGMS Initial Review Group (TWD)
Program Officer
Maas, Stefan
Project Start
1983-07-01
Project End
2024-06-30
Budget Start
2019-07-01
Budget End
2020-06-30
Support Year
36
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Rajbhandari, Prashant; Thomas, Brandon J; Feng, An-Chieh et al. (2018) IL-10 Signaling Remodels Adipose Chromatin Architecture to Limit Thermogenesis and Energy Expenditure. Cell 172:218-233.e17
Lee, Ernest Y; Wong, Gerard C L; Ferguson, Andrew L (2018) Machine learning-enabled discovery and design of membrane-active peptides. Bioorg Med Chem 26:2708-2718
Bulterys, Philip L; Bulterys, Michelle A; Phommasone, Koukeo et al. (2018) Climatic drivers of melioidosis in Laos and Cambodia: a 16-year case series analysis. Lancet Planet Health 2:e334-e343
Lee, Ernest Y; Lee, Michelle W; Wong, Gerard C L (2018) Modulation of toll-like receptor signaling by antimicrobial peptides. Semin Cell Dev Biol :
Chakhoyan, A; Leu, K; Pope, W B et al. (2018) Improved Spatiotemporal Resolution of Dynamic Susceptibility Contrast Perfusion MRI in Brain Tumors Using Simultaneous Multi-Slice Echo-Planar Imaging. AJNR Am J Neuroradiol 39:43-45
Pellionisz, Peter A; Lin, Yuan; Mallen-St Clair, Jon et al. (2018) Use of a Novel Polymer in an Animal Model of Head and Neck Squamous Cell Carcinoma. Otolaryngol Head Neck Surg 158:110-117
Lee, Calvin K; de Anda, Jaime; Baker, Amy E et al. (2018) Multigenerational memory and adaptive adhesion in early bacterial biofilm communities. Proc Natl Acad Sci U S A 115:4471-4476
Pellionisz, Peter A; Badran, Karam W; Grundfest, Warren S et al. (2018) Detection of surgical margins in oral cavity cancer: the role of dynamic optical contrast imaging. Curr Opin Otolaryngol Head Neck Surg 26:102-107
Li, Jiayun; Speier, William; Ho, King Chung et al. (2018) An EM-based semi-supervised deep learning approach for semantic segmentation of histopathological images from radical prostatectomies. Comput Med Imaging Graph 69:125-133
Ricard, Clément; Arroyo, Erica D; He, Cynthia X et al. (2018) Two-photon probes for in vivo multicolor microscopy of the structure and signals of brain cells. Brain Struct Funct 223:3011-3043

Showing the most recent 10 out of 316 publications