The goal of the proposed Yale Biophysics Training Program (BTP) is provide pre-doctoral students with strong quantitative training that will allow them to perform research at the forefront of biomedical science. The research topics derive from the diverse interests of our 34 faculty mentors and span areas from the study of the quantum mechanics of photosynthesis, the physics of NMR pulse sequences, to the structural biology of macromolecular machines. Our student trainees benefit from access to world-class expertise in X-Ray crystallography, optical and magnetic spectroscopies, cryo-electron microscopy, computational chemistry, biochemistry, and physical chemistry. Furthermore, our students are trained in usage of state-of-the-art instrumentation. The organization of the BTP is structured to facilitate our mentor's rigorous training of students in biophysical research in a manner that fosters their creativity and intrepidness. At Yale and elsewhere the importance of biophysics on health related subjects is evident from the number of biophysical studies occurring across several academic departments. Consistent with this expansion of biophysics, our mentors come from many departments including Physics, Chemistry, Engineering, Molecular Biophysics and Biochemistry (MB&B), Genetics, Pharmacology, Immunology, and Biology. Students are admitted to the BTP either directly through the Chemistry Department or from MB&B through an umbrella Biochemistry, Quantitative Biology, Biophysics, and Structural Biology (BQBS) program. The BQBS track, by its association with medical school departments, has enabled the BTP access to an expanded number of students from which to draw upon. Likewise, the students that come to the BTP through Chemistry and MB&B have scientific backgrounds that range from physics, mathematics, engineering, and physical chemistry, to molecular biology, biochemistry and biology. In their first year, students satisfy curricular requirements and further enhance and broaden their backgrounds through elective coursework. Also during the first year, students acquaint themselves with research by performing three laboratory research rotations. Transitioning to full-time research, students take two qualifying exams designed to encourage independent thinking and research project design. Upon joining a mentor lab, dissertation research is performed with supervision from a thesis committee comprised of three faculty that are familiar with the student's research topic and meet regularly to discuss progress. This BTP aims to support students in year 2 and potentially in year 3, as long as the student remains active in biophysical research. Other training enhancements of this BTP that are designed to facilitate interactions and cohesion among the trainees include research in progress talks, BTP Director workshops, the outside invited speaker program, and the biophysical retreat. The training resources at Yale and the dedicated commitment to training by the mentors, facilitates the BTP goal to produce the next generation of scientists.

Public Health Relevance

This application proposes to train graduate students to become independent scientists in modern experimental and computational biophysics. This biophysical training is essential to understand the function of all biological macromolecules. This understanding is crucial to deciphering how aberrant biological processes cause disease and this understanding will benefit human health.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM008283-32
Application #
9726004
Study Section
NIGMS Initial Review Group (TWD)
Program Officer
Flicker, Paula F
Project Start
1988-09-30
Project End
2023-06-30
Budget Start
2019-07-01
Budget End
2020-06-30
Support Year
32
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Yale University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
St Gelais, Corine; Kim, Sun Hee; Maksimova, Victoria V et al. (2018) A Cyclin-Binding Motif in Human SAMHD1 Is Required for Its HIV-1 Restriction, dNTPase Activity, Tetramer Formation, and Efficient Phosphorylation. J Virol 92:
Iwamoto, Daniel V; Huehn, Andrew; Simon, Bertrand et al. (2018) Structural basis of the filamin A actin-binding domain interaction with F-actin. Nat Struct Mol Biol 25:918-927
Antonucci, Jenna M; Kim, Sun Hee; St Gelais, Corine et al. (2018) SAMHD1 Impairs HIV-1 Gene Expression and Negatively Modulates Reactivation of Viral Latency in CD4+ T Cells. J Virol 92:
Liptak, Cary; Mahmoud, Mariam M; Eckenroth, Brian E et al. (2018) I260Q DNA polymerase ? highlights precatalytic conformational rearrangements critical for fidelity. Nucleic Acids Res 46:10740-10756
Huehn, Andrew; Cao, Wenxiang; Elam, W Austin et al. (2018) The actin filament twist changes abruptly at boundaries between bare and cofilin-decorated segments. J Biol Chem 293:5377-5383
Barentine, Andrew E S; Schroeder, Lena K; Graff, Michael et al. (2018) Simultaneously Measuring Image Features and Resolution in Live-Cell STED Images. Biophys J 115:951-956
Heavner, Gretchen L W; Mansfeldt, Cresten B; Debs, Garrett E et al. (2018) Biomarkers' Responses to Reductive Dechlorination Rates and Oxygen Stress in Bioaugmentation Culture KB-1TM. Microorganisms 6:
Crawford, Jennifer M; Stone, Elizabeth A; Metrano, Anthony J et al. (2018) Parameterization and Analysis of Peptide-Based Catalysts for the Atroposelective Bromination of 3-Arylquinazolin-4(3H)-ones. J Am Chem Soc 140:868-871
Buzovetsky, Olga; Tang, Chenxiang; Knecht, Kirsten M et al. (2018) The SAM domain of mouse SAMHD1 is critical for its activation and regulation. Nat Commun 9:411
Knecht, Kirsten M; Buzovetsky, Olga; Schneider, Constanze et al. (2018) The structural basis for cancer drug interactions with the catalytic and allosteric sites of SAMHD1. Proc Natl Acad Sci U S A 115:E10022-E10031

Showing the most recent 10 out of 116 publications