The UCSF Graduate Group in Biophysics is seeking continuation of its established training program in molecular biophysics. The program emphasizes interdisciplinary training at the interface between biology, physics, chemistry and mathematics to address fundamental questions in molecular function and cellular processes. We recruit a diverse group of students with quantitative backgrounds and train them to design and conduct rigorous experimental and computational research. We seek funding at a sustained level of 12 appointed predoctoral trainees, each supported for a maximum of two years. The program's objectives are to (i) provide our students with both a foundation in quantitative, physical approaches and a sophisticated understanding of biology; (ii) bridge computational and experimental biophysical methods; and (iii) prepare the next generation of leaders in their field and career. Hallmarks of our program include: (i) Collaborative and interdisciplinary research. The Biophysics program currently comprises faculty from 9 departments and 3 Schools. Faculty membership grew from 46 to 59 in the last funding period, adding several new faculty with expertise in mathematics, computer science, chemistry, and physics. The Biophysics program is a primary catalyst for bridging between the physical and biological sciences, responding to a growing need for quantitative approaches to biology and medicine. Faculty and students publish many collaborative papers. Retreats and journal clubs foster further collaborative interactions. (ii) An innovative and evolving curriculum. Our core values of collaboration and interdisciplinary research are instilled from day one in ?Bootcamp?, and continue in well-tested and new intensive project-based core courses designed to establish a common knowledge and language, and to foster team skills. A modular panel of ?selectives? addresses important knowledge gaps, inherent in the diverse scientific backgrounds of our students. Current and new `mini courses' facilitate deep exploration of research topics in small groups with faculty experts, and allow the curriculum to adjust to current scientific developments. Changes are made regularly in response to student and alumni feedback and program assessment. (iii) Intensive training in communication, and preparation for diverse careers. We emphasize training in key competencies needed in diverse careers in academia, industry, or the public sector, including oral and written presentation, communication, and teamwork skills. Students can participate in career preparation workshops and internships, and many take on leadership roles in outreach and teaching. Our alumni include leaders in both academia and industry, including several who have started successful companies. (iv) Continued commitment to diversity. Our diverse current students and alumni are successful in their research and careers. We will augment our current structured approach to recruitment and retention of diverse students with new program-specific initiatives.
Morrissey, Meghan A; Williamson, Adam P; Steinbach, Adriana M et al. (2018) Chimeric antigen receptors that trigger phagocytosis. Elife 7: |
Paquette, David R; Tibble, Ryan W; Daifuku, Tristan S et al. (2018) Control of mRNA decapping by autoinhibition. Nucleic Acids Res 46:6318-6329 |
Leeman, Dena S; Hebestreit, Katja; Ruetz, Tyson et al. (2018) Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science 359:1277-1283 |
Heymann, J Bernard; Marabini, Roberto; Kazemi, Mohsen et al. (2018) The first single particle analysis Map Challenge: A summary of the assessments. J Struct Biol 204:291-300 |
Palovcak, Eugene; Wang, Feng; Zheng, Shawn Q et al. (2018) A simple and robust procedure for preparing graphene-oxide cryo-EM grids. J Struct Biol 204:80-84 |
Wall, Michael E; Wolff, Alexander M; Fraser, James S (2018) Bringing diffuse X-ray scattering into focus. Curr Opin Struct Biol 50:109-116 |
Citron, Y Rose; Fagerstrom, Carey J; Keszthelyi, Bettina et al. (2018) The centrosomin CM2 domain is a multi-functional binding domain with distinct cell cycle roles. PLoS One 13:e0190530 |
Kimmel, Jacob C; Chang, Amy Y; Brack, Andrew S et al. (2018) Inferring cell state by quantitative motility analysis reveals a dynamic state system and broken detailed balance. PLoS Comput Biol 14:e1005927 |
Morgan, Gareth J; Burkhardt, David H; Kelly, Jeffery W et al. (2018) Translation efficiency is maintained at elevated temperature in Escherichia coli. J Biol Chem 293:777-793 |
Kalia, Raghav; Wang, Ray Yu-Ruei; Yusuf, Ali et al. (2018) Structural basis of mitochondrial receptor binding and constriction by DRP1. Nature 558:401-405 |
Showing the most recent 10 out of 184 publications