The Biotechnology Training Program (BTP) at the University of Wisconsin-Madison seeks to train a cadre of researchers who use cross-disciplinary approaches from the biological-physical science interface to solve biomedical research problems. The BTP is a multi-dimensional program that builds on existing disciplinary excellence across 5 colleges while providing trainees a common set of cross-disciplinary experiences. BTP trainees are admitted to and fulfill the requirements of either one of the 5 core Ph.D. programs (Biochemistry, Biomolecular Chemistry, Chemistry, Chemical Engineering, and Microbiology) or those of many other outstanding programs on campus. These graduate programs provide the disciplinary excellence that trainees need to become future leaders in their respective fields. A common set of crossdisciplinary experiences distinguishes BTP trainees from their peers; these include a biotechnology-oriented minor course program, regular interactions with a BTP minor professor from another discipline, participation in a biotechnology student seminar program, and an industrial internship. These common experiences ensure that all BTP trainees, regardless of their major Ph. D. program, will be conversant in the molecular biology, genetics, biochemistry and physiology principles required to function as cross-disciplinary scientists and engineers in the 21st Century. UW-Madison is proud to partner with NIH in sponsoring the largest BTP in the country, with 33 NIGMS funded trainees. In its 14 year history, the BTP has trained 174 Ph.D. students who worked with 94 different faculty in 20 Ph. D. programs. As student interest in the BTP has continued to grow, the opportunities for trainees to partake of all BTP activities is increasingly constrained. Consequently, we are requesting 3 more NIH-funded positions in each of the next 2 years, so there will be a total of 39 BTP trainees at steady-state. Increased NIH support will permit more high-quality students to partake of BTP activities, expand the breadth of cross-disciplinary interactions across campus, and increase opportunities for trainees to capitalize on recent technological advances in order to solve emerging problems at the biological-physical science interface. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM008349-19
Application #
7265140
Study Section
Special Emphasis Panel (ZGM1-BRT-0 (04))
Program Officer
Jones, Warren
Project Start
1989-09-27
Project End
2009-06-30
Budget Start
2007-07-01
Budget End
2008-06-30
Support Year
19
Fiscal Year
2007
Total Cost
$1,314,041
Indirect Cost
Name
University of Wisconsin Madison
Department
Microbiology/Immun/Virology
Type
Schools of Earth Sciences/Natur
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Cook, Taylor B; Rand, Jacqueline M; Nurani, Wasti et al. (2018) Genetic tools for reliable gene expression and recombineering in Pseudomonas putida. J Ind Microbiol Biotechnol 45:517-527
Lapointe, Christopher P; Stefely, Jonathan A; Jochem, Adam et al. (2018) Multi-omics Reveal Specific Targets of the RNA-Binding Protein Puf3p and Its Orchestration of Mitochondrial Biogenesis. Cell Syst 6:125-135.e6
England, Christopher G; Jiang, Dawei; Ehlerding, Emily B et al. (2018) 89Zr-labeled nivolumab for imaging of T-cell infiltration in a humanized murine model of lung cancer. Eur J Nucl Med Mol Imaging 45:110-120
Venturelli, Ophelia S; Carr, Alex C; Fisher, Garth et al. (2018) Deciphering microbial interactions in synthetic human gut microbiome communities. Mol Syst Biol 14:e8157
Gastfriend, Benjamin D; Palecek, Sean P; Shusta, Eric V (2018) Modeling the blood-brain barrier: Beyond the endothelial cells. Curr Opin Biomed Eng 5:6-12
Pinkert, Michael A; Salkowski, Lonie R; Keely, Patricia J et al. (2018) Review of quantitative multiscale imaging of breast cancer. J Med Imaging (Bellingham) 5:010901
Stebbins, Matthew J; Lippmann, Ethan S; Faubion, Madeline G et al. (2018) Activation of RAR?, RAR?, or RXR? Increases Barrier Tightness in Human Induced Pluripotent Stem Cell-Derived Brain Endothelial Cells. Biotechnol J 13:
DeLaney, Kellen; Sauer, Christopher S; Vu, Nhu Q et al. (2018) Recent Advances and New Perspectives in Capillary Electrophoresis-Mass Spectrometry for Single Cell ""Omics"". Molecules 24:
Hennings, Thomas G; Chopra, Deeksha G; DeLeon, Elizabeth R et al. (2018) In Vivo Deletion of ?-Cell Drp1 Impairs Insulin Secretion Without Affecting Islet Oxygen Consumption. Endocrinology 159:3245-3256
Schaffer, Leah V; Rensvold, Jarred W; Shortreed, Michael R et al. (2018) Identification and Quantification of Murine Mitochondrial Proteoforms Using an Integrated Top-Down and Intact-Mass Strategy. J Proteome Res 17:3526-3536

Showing the most recent 10 out of 524 publications