The predoctoral Training Program in Biomolecular Pharmacology at Boston University was launched in 1991 as a training center that would meld quantitative principles of biomedical engineering (BME) with pharmacology and experimental therapeutics, and was honored in July 1997 with the award of an NIGMS T32. In the succeeding 14 years, this university-wide program has continued to provide a supportive learning environment for predoctoral students. Program characteristics include an innovative curriculum, interdisciplinary laboratory rotations, an industrial summer internship, and diverse research training opportunities that span the Medical and Charles-River campuses. Students enter the Program via the Departments of Pharmacology or BME. Program trainees in BME and other departments experience an integrated curriculum designed to provide enriched training in the principles and practice of pharmacology that is coordinated with specialized training in their primary discipline. Trainees in Pharmacology gain access to diverse research and educational experiences that build upon those provided by core pharmacology faculty. The core curriculum stresses fundamental pharmacological principles as well as key issues governing interactions of bioactive molecules, challenges of drug delivery for novel therapeutics, animal models for drug action, their relevance to the clinic, and the challenges for modern drug discovery. Participating faculty, originally 21 and now 52, contribute expertise in focus areas including neuropharmacology, vascular and cancer pharmacology, genomics, gene therapy, proteomics, animal models (transgenic and behavioral), structural biology, nanotechnology, systems biology and medicinal chemistry. Sites for thesis research are also located in departments of Anatomy &Neurobiology, Biochemistry, Biology, Chemistry, Medicine, Neurology, Pathology, Physiology and Biophysics, Psychiatry, and Psychology. A major innovation implemented in 2010 is the university-wide Graduate Program for Neuroscience (GPN), which is attracting a large additional pool of high quality students with interests in pharmacological neuroscience. The Program has continued offering summer internships with collaborating scientists at local pharmaceutical companies. Career guidance with active oversight by faculty and senior student mentors engages trainees and provides leadership opportunities that are relevant to their career paths whether in academia, government or the private sector. Training duration is about 5.7 years and graduating students perform exceptionally well at competing for high level positions in various sectors. There are currently 46 students (41 TGE) in the program including 4 TGE from underrepresented minorities. This renewal application seeks funding for 8 trainees each year. The requested increase in the number of slots is to leverage the increased interest of highly qualified BME and GPN candidates in pharmacology training.

Public Health Relevance

The interdisciplinary Program in Biomolecular Pharmacology at Boston University (BU) is designed to prepare predoctoral students for this new era of pharmacological research and discovery, combining the fundamental principles of pharmacology with novel approaches drawn from bioinformatics, biophysics, biochemistry, biomedical engineering, chemistry, genetics and molecular medicine. Trainees undertake an integrated program of course work that emphasizes translation of basic science into clinical medicine. Prior to selecting a project for their thesis research, rotating students become familiar with the breadth of pharmacological approaches, by experiencing the different styles of innovative research in multiple laboratories across BU, as well as the opportunity to participate in research projects in industrial laboratories.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM008541-17
Application #
8689068
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Okita, Richard T
Project Start
1997-07-01
Project End
2018-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
17
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Boston University
Department
Pharmacology
Type
Schools of Medicine
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02118
Weinstein, Zohar B; Kuru, Nurdan; Kiriakov, Szilvia et al. (2018) Modeling the impact of drug interactions on therapeutic selectivity. Nat Commun 9:3452
Vittoria, Marc A; Shenk, Elizabeth M; O'Rourke, Kevin P et al. (2018) A genome-wide microRNA screen identifies regulators of tetraploid cell proliferation. Mol Biol Cell 29:1682-1692
Khatri, Natasha; Gilbert, James P; Huo, Yuda et al. (2018) The Autism Protein Ube3A/E6AP Remodels Neuronal Dendritic Arborization via Caspase-Dependent Microtubule Destabilization. J Neurosci 38:363-378
Mason-Osann, Emily; Dai, Anqi; Floro, Jess et al. (2018) Identification of a novel gene fusion in ALT positive osteosarcoma. Oncotarget 9:32868-32880
Maziuk, Brandon F; Apicco, Daniel J; Cruz, Anna Lourdes et al. (2018) RNA binding proteins co-localize with small tau inclusions in tauopathy. Acta Neuropathol Commun 6:71
Ruan, Qiu T; Yazdani, Neema; Beierle, Jacob A et al. (2018) Changes in neuronal immunofluorescence in the C- versus N-terminal domains of hnRNP H following D1 dopamine receptor activation. Neurosci Lett 684:109-114
Li, Zhuting; Cogswell, Meaghan; Hixson, Kathryn et al. (2018) Nuclear Respiratory Factor 1 (NRF-1) Controls the Activity Dependent Transcription of the GABA-A Receptor Beta 1 Subunit Gene in Neurons. Front Mol Neurosci 11:285
Frame, Alissa A; Wainford, Richard D (2018) Mechanisms of altered renal sodium handling in age-related hypertension. Am J Physiol Renal Physiol 315:F1-F6
Anderson, Nicole M; Mucka, Patrick; Kern, Joseph G et al. (2018) The emerging role and targetability of the TCA cycle in cancer metabolism. Protein Cell 9:216-237
Robinson, Amy A; Abraham, Carmela R; Rosene, Douglas L (2018) Candidate molecular pathways of white matter vulnerability in the brain of normal aging rhesus monkeys. Geroscience 40:31-47

Showing the most recent 10 out of 129 publications