The University of Michigan proposes to continue a predoctoral Chemistry-Biology Interface (CBI) Training Program for a selected group of Ph.D. students. The number of students requested for this new training program is 10 for a five-year period of support. The participating units are the Department of Chemistry and the Department of Biophysics from the College of Literature, Science, and the Arts; the Department of Biological Chemistry, the Department of Pharmacology, and the Department of Pathology from the Medical School; the Department of Medicinal Chemistry from the College of Pharmacy; the Program in Chemical Biology, and the Life Sciences Institute. The faculty of the CBI Training Program includes synthetic organic and inorganic chemists, bioorganic chemists, bioanalytical chemists, protein chemists, mechanistic enzymologists, spectroscopists, and crystallographers. The Ph.D. degrees will be awarded in Chemistry, Biophysics, Biological Chemistry, Chemical Biology, Pharmacology, Medicinal Chemistry, and Pathology. Students will be appointed to the training program for two years beginning in the second year of their Ph.D. program. The curriculum of the training program includes a novel student sabbatical to be completed before graduation and, preferably, while the trainee is supported by the training grant. This sabbatical program remains as one of the most significant and unique opportunities available to the University of Michigan CBI trainees. In an effort to enhance interaction between students and provide more opportunity for trainees to present their research, we have instituted a monthly luncheon that is attended by present and past CBI trainees. Career development activities will be available to students at the local and national level. Two core courses in Chemical Biology and regularly scheduled opportunities for the trainees to present their research results to the training program faculty and fellow trainees, are also integral to the program. Research opportunities for the trainees are varied and involve faculty with a wide range of expertise in research at the interface of chemistry and biology. The trainees have access to the most sophisticated techniques and instrumentation in modern research at this interface. The Michigan CBI training program supports students both from research groups that have historically focused on purely chemical or purely biological problems as well as research groups with a strong core emphasis in chemical biology. This varied perspective provides strengths and opportunities integral to the training program. The faculty of the training program has a long history of collaborative research, and this interactive approach to research is a central theme in the training of a new generation of scientists.

Public Health Relevance

This project will produce a generation of scientists uniquely positioned to creatively address problems in research at the chemistry-biology interface. The discovery of solutions to problems in human health increasingly requires the expertise that this multidisciplinary training allows. The program will provide unique opportunities for trainees, while leveraging the resources of the program to add significant value to students working at this interface across the university.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM008597-20
Application #
9063551
Study Section
Training and Workforce Development Subcommittee - D (TWD)
Program Officer
Fabian, Miles
Project Start
1996-07-01
Project End
2019-06-30
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
20
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Tebo, Alison G; Pinter, Tyler B J; García-Serres, Ricardo et al. (2018) Development of a Rubredoxin-Type Center Embedded in a de Dovo-Designed Three-Helix Bundle. Biochemistry 57:2308-2316
Haynes, Sarah E; Majmudar, Jaimeen D; Martin, Brent R (2018) DIA-SIFT: A Precursor and Product Ion Filter for Accurate Stable Isotope Data-Independent Acquisition Proteomics. Anal Chem 90:8722-8726
Taylor, Erin L; Kesavan, Preethi M; Wolfe, Abigail E et al. (2018) Distinguishing Specific and Nonspecific Complexes of Alkyladenine DNA Glycosylase. Biochemistry 57:4440-4454
Bouley, Renee; Waldschmidt, Helen V; Cato, M Claire et al. (2017) Structural Determinants Influencing the Potency and Selectivity of Indazole-Paroxetine Hybrid G Protein-Coupled Receptor Kinase 2 Inhibitors. Mol Pharmacol 92:707-717
Castañeda, Carol Ann; Wolfson, Noah A; Leng, Katherine R et al. (2017) HDAC8 substrate selectivity is determined by long- and short-range interactions leading to enhanced reactivity for full-length histone substrates compared with peptides. J Biol Chem 292:21568-21577
Rogawski, David S; Vitanza, Nicholas A; Gauthier, Angela C et al. (2017) Integrating RNA sequencing into neuro-oncology practice. Transl Res 189:93-104
Song, James M; Menon, Arya; Mitchell, Dylan C et al. (2017) High-Throughput Chemical Probing of Full-Length Protein-Protein Interactions. ACS Comb Sci 19:763-769
Tebo, Alison G; Quaranta, Annamaria; Herrero, Christian et al. (2017) Intramolecular Photogeneration of a Tyrosine Radical in a Designed Protein. ChemPhotoChem 1:89-92
Yao, Xin-Qiu; Cato, M Claire; Labudde, Emily et al. (2017) Navigating the conformational landscape of G protein-coupled receptor kinases during allosteric activation. J Biol Chem 292:16032-16043
Lopez, Jeffrey E; Haynes, Sarah E; Majmudar, Jaimeen D et al. (2017) HDAC8 Substrates Identified by Genetically Encoded Active Site Photocrosslinking. J Am Chem Soc 139:16222-16227

Showing the most recent 10 out of 89 publications