Modern drug discovery and development require the training of scientists who understand the molecular, physiological and quantitative basis of drug action and specificity, and who can apply modern technologies and concepts to the development of novel therapeutic strategies. This multidisciplinary doctoral training program in the Pharmacological Sciences is designed to help meet that demand by preparing students for biomedical research careers in schools of medicine, dentistry and pharmacy, in research institutes, and in governmental or industrial laboratories. The most important component of training is laboratory research, first as a series of research rotations, then in the dissertation laboratory. This training is complemented by a core course that integrates the theoretical and experimental foundations of modern biological sciences;core courses in pharmacology that emphasize quantitative analysis of drug action, pharmacokinetics, drug disposition, biostatistics and experimental design;advanced courses in specialty areas;seminar courses and journal clubs. Emphasis throughout is placed on development and refinement of communication and analytical skills. The 48 training faculty represent 17 basic science and clinical departments at Emory providing a wealth of diverse research training opportunities. Research foci in the program include Neurological Diseases and Therapy, Cancer Pharmacology, Cardiovascular Pharmacology, Chemical Biology and Drug Discovery and Novel Therapeutic Modalities. Cell Signaling, Systems and Integrative Pharmacology, and Toxicology are crosscutting themes. This Program currently supports six students each year, who are selected mainly from a pool of approximately 20-30 eligible students in the first three years of the Molecular and Systems Pharmacology (MSP) Program. Six slots are requested in this renewal. Graduates will have acquired broad familiarity with pharmacology, knowledge in depth in the area of dissertation research, and the technical, communicative and analytical skills necessary to pursue an independent research career. Students graduate an average of 5.9 years after matriculation. The research conducted by the trainees in this program will advance our knowledge of disease processes and contribute to development of novel and improved therapeutic strategies that will benefit the health of our citizens. By preparing young scientists to contribute to and lead the nation's efforts in these areas, this training program will help to ensure that our ability to imprve the nation's health remains strong in the future.

Public Health Relevance

This application requests funds to support the training of 6 graduate students per year in an interdisciplinary Pharmacological sciences graduate program. Forty-eight training faculty from 17 departments provide a wealth of diverse research training opportunities for students. The goal is to produce broadly trained scientists who will contribute t the discovery and development of novel therapeutic agents that will improve healthcare in the United States and worldwide.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
5T32GM008602-17
Application #
8497690
Study Section
National Institute of General Medical Sciences Initial Review Group (BRT)
Program Officer
Okita, Richard T
Project Start
1996-07-01
Project End
2017-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
17
Fiscal Year
2013
Total Cost
$267,927
Indirect Cost
$12,735
Name
Emory University
Department
Pharmacology
Type
Schools of Medicine
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Squires, Katherine E; Gerber, Kyle J; Pare, Jean-Francois et al. (2018) Regulator of G protein signaling 14 (RGS14) is expressed pre- and postsynaptically in neurons of hippocampus, basal ganglia, and amygdala of monkey and human brain. Brain Struct Funct 223:233-253
Mitchell, Sabrina L; Uppal, Karan; Williamson, Samantha M et al. (2018) The Carnitine Shuttle Pathway is Altered in Patients With Neovascular Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 59:4978-4985
Perszyk, Riley; Katzman, Brooke M; Kusumoto, Hirofumi et al. (2018) An NMDAR positive and negative allosteric modulator series share a binding site and are interconverted by methyl groups. Elife 7:
Rowson, Sydney A; Foster, Stephanie L; Weinshenker, David et al. (2018) Locomotor sensitization to cocaine in adolescent and adult female Wistar rats. Behav Brain Res 349:158-162
Moody, Olivia A; Jenkins, Andrew (2018) The role of loops B and C in determining the potentiation of GABAA receptors by midazolam. Pharmacol Res Perspect 6:e00433
Gardinassi, Luiz G; Arévalo-Herrera, Myriam; Herrera, Sócrates et al. (2018) Integrative metabolomics and transcriptomics signatures of clinical tolerance to Plasmodium vivax reveal activation of innate cell immunity and T cell signaling. Redox Biol 17:158-170
Regan, Michael C; Grant, Timothy; McDaniel, Miranda J et al. (2018) Structural Mechanism of Functional Modulation by Gene Splicing in NMDA Receptors. Neuron 98:521-529.e3
Bai, Renren; Sun, Jian; Liang, Zhongxing et al. (2018) Anti-inflammatory hybrids of secondary amines and amide-sulfamide derivatives. Eur J Med Chem 150:195-205
Salam, Akram M; Quave, Cassandra L (2018) Targeting Virulence in Staphylococcus aureus by Chemical Inhibition of the Accessory Gene Regulator System In Vivo. mSphere 3:
Squires, Katherine E; Montañez-Miranda, Carolina; Pandya, Rushika R et al. (2018) Genetic Analysis of Rare Human Variants of Regulators of G Protein Signaling Proteins and Their Role in Human Physiology and Disease. Pharmacol Rev 70:446-474

Showing the most recent 10 out of 176 publications