This application seeks to continue for years 06-10 the postdoctoral training grant entitled, """"""""Research Training Program for Medical Geneticists."""""""" The program's overall goal is to provide a mentored research experience for M.D. medical geneticists to perform productive independent basic/ translational research and to develop the skills and experience required to effectively compete for federal funding and become academic leaders in medical genetics and genomics. The program's emphasis is on basic and translational research in genetics and genomics, including the application of recent and continuing advances in genome sequencing and analysis, bioinformatics, and systems biology analyses, towards the understanding of the genetics/genomics of monogenic and complex traits, and to translate these findings into improved diagnosis, prevention, and new effective therapies. MD trainees chosen for this program will have completed a residency in Medical Genetics. Our Medical Genetics residency programs provides a pipeline of outstanding candidates who have demonstrated a commitment to a basic/ translational research career. Highly qualified medical geneticist applicants from other residency training programs and underrepresented minority candidates will also be recruited. Trainees will be supported for a period of 2 to 3 years under close supervision of one of our Research Mentor faculty, and each trainee will have an appropriate Advisory Committee. Previous trainees from this program have successfully obtained academic/ industry positions and have applied for/ received federal funding. This training program builds upon considerable resources at Mount Sinai including: 1) an exceptional group of funded Research Mentors in multidisciplinary research programs, as well as faculty who serve as Clinical Laboratory Preceptors and Research Core Directors;2) our accredited Medical Genetics training programs in all the ABMG specialties;3) didactic elective courses in basic translational research methodology, and responsible conduct of research, 4) an infrastructure of Shared Research Facilities (SRFs) and disease-oriented and core-technology-based research institutes, including our new Institute for Genomics and Multiscale Biology. All trainees will participate in a monthly Training Grant Conference, our weekly work-in progress conference, weekly Genetics/Genomics seminar series, and our annual Research Day with our External Advisory Committee. This training program will meet a critical need for independent medical geneticists who can translate advances in genetics/ genomics into improved diagnosis and treatment of human disease. !

Public Health Relevance

The remarkable recent advances in genetics and genomic technologies have led to greater understanding of common diseases and cancers, with the implicit prospects of their improved diagnosis and treatment. Medical geneticists are especially qualified to carry out research that will further combat common diseases. This training grant is designed to provide mentored research training to outstanding physician-geneticists so they may advance research and develop independent research careers.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Institutional National Research Service Award (T32)
Project #
2T32GM082773-06
Application #
8414723
Study Section
Special Emphasis Panel (ZGM1-BRT-5 (PD))
Program Officer
Haynes, Susan R
Project Start
2008-07-01
Project End
2018-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
6
Fiscal Year
2013
Total Cost
$282,070
Indirect Cost
$19,802
Name
Icahn School of Medicine at Mount Sinai
Department
Genetics
Type
Schools of Medicine
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Schussler, Edith; Linkner, Rita V; Levitt, Jacob et al. (2018) Protein-losing enteropathy and joint contractures caused by a novel homozygous ANTXR2 mutation. Adv Genomics Genet 8:17-21
De Rubeis, Silvia; Siper, Paige M; Durkin, Allison et al. (2018) Delineation of the genetic and clinical spectrum of Phelan-McDermid syndrome caused by SHANK3 point mutations. Mol Autism 9:31
Prasun, Pankaj; Chapel-Crespo, Cristel; Williamson, Amy et al. (2018) Skin lesions in a patient with Cobalamin C disease in poor metabolic control. J Inherit Metab Dis 41:279-280
Manheimer, Kathryn B; Richter, Felix; Edelmann, Lisa J et al. (2018) Robust identification of mosaic variants in congenital heart disease. Hum Genet 137:183-193
Reiner, Jennifer; Pisani, Laura; Qiao, Wanqiong et al. (2018) Cytogenomic identification and long-read single molecule real-time (SMRT) sequencing of a Bardet-Biedl Syndrome 9 (BBS9) deletion. NPJ Genom Med 3:3
Ligsay, Andrew; Van Dijck, Anke; Nguyen, Danh V et al. (2017) A randomized double-blind, placebo-controlled trial of ganaxolone in children and adolescents with fragile X syndrome. J Neurodev Disord 9:26
Siper, Paige M; De Rubeis, Silvia; Trelles, Maria Del Pilar et al. (2017) Prospective investigation of FOXP1 syndrome. Mol Autism 8:57
Shi, L; Webb, B D; Birch, A H et al. (2017) Comprehensive population screening in the Ashkenazi Jewish population for recurrent disease-causing variants. Clin Genet 91:599-604
Tanaka, Akemi J; Cho, Megan T; Willaert, Rebecca et al. (2017) De novo variants in EBF3 are associated with hypotonia, developmental delay, intellectual disability, and autism. Cold Spring Harb Mol Case Stud 3:
Soorya, Latha; Leon, Jill; Trelles, M Pilar et al. (2017) Framework for assessing individuals with rare genetic disorders associated with profound intellectual and multiple disabilities (PIMD): the example of Phelan McDermid Syndrome. Clin Neuropsychol :1-30

Showing the most recent 10 out of 62 publications