Support is requested for a renewal of a multi-disciplinary training program in genomics at Princeton, aimed at educating genome scientists with the quantitative and computational tools likely to be required for the biology of the future. The genome training program will support students in Princeton's Graduate Program in Quantitative and Computational Biology (QCB), a joint undertaking between the Lewis-Sigler Institute for Integrative Genomics and five Princeton departments (Computer Science, Ecology and Evolutionary Biology, Molecular Biology, Chemistry and Physics) and administered by the Institute. Genomics trainees will be able to do their thesis research with any of 49 QCB faculty in 10 departments united by common interests in quantitative and computational biology. Trainees will do research in functional genomics in bacteria, eukaryotic models and mammalian systems;computational projects ranging from bio-informatics and molecular evolution to high-throughput data visualization and systems biology projects ranging from microbial metabolism to systems neuroscience;and theoretical projects ranging from basic dynamical modeling to modeling signal transduction in epithelia or neurons. Because the training program, completely new when the training grant was awarded, is still growing, and because it is still one of the few of its kind, we request a modest increase from 9 positions (the current level), ramping up one position per year to a new steady state of 12 slots. Trainees will have an individualized training plan administered by the Executive Committee of the QCB and a Genomics Committee;formal training will include new courses in genomics and genomic analysis, a seminar series, a student-run journal club, and other multi-disciplinary activities centered in the Institute. Trainees will have the opportunity to teach in a new innovative multidisciplinary introductory program for undergraduates at Princeton. Finally, trainees and eligible faculty will participate in a number of activities designed to recruit and teach individuals who are members of under-represented minority groups.

Public Health Relevance

The genome and the computer have revolutionized biomedical science. In order that the medical science of the future takes full advantage of this revolution, a new kind of education for Ph.D. biomedical scientists is required, one in which biology and the more quantitative sciences, especially computation, are given equal weight. The NHGRI training program at Princeton is one of the pioneer programs fulfilling this role.

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Institutional National Research Service Award (T32)
Project #
3T32HG003284-10S1
Application #
8822362
Study Section
Ethical, Legal, Social Implications Review Committee (GNOM)
Program Officer
Gatlin, Christine L
Project Start
2004-08-18
Project End
2015-04-30
Budget Start
2013-08-01
Budget End
2015-04-30
Support Year
10
Fiscal Year
2014
Total Cost
$531,889
Indirect Cost
$25,177
Name
Princeton University
Department
Type
Organized Research Units
DUNS #
002484665
City
Princeton
State
NJ
Country
United States
Zip Code
08544
Treen, Nicholas; Heist, Tyler; Wang, Wei et al. (2018) Depletion of Maternal Cyclin B3 Contributes to Zygotic Genome Activation in the Ciona Embryo. Curr Biol 28:1150-1156.e4
Brush, Eleanor R; Krakauer, David C; Flack, Jessica C (2018) Conflicts of interest improve collective computation of adaptive social structures. Sci Adv 4:e1603311
Kaletsky, Rachel; Yao, Victoria; Williams, April et al. (2018) Transcriptome analysis of adult Caenorhabditis elegans cells reveals tissue-specific gene and isoform expression. PLoS Genet 14:e1007559
Brush, Eleanor; Brännström, Åke; Dieckmann, Ulf (2018) Indirect reciprocity with negative assortment and limited information can promote cooperation. J Theor Biol 443:56-65
Liu, Mochi; Sharma, Anuj K; Shaevitz, Joshua W et al. (2018) Temporal processing and context dependency in Caenorhabditis elegans response to mechanosensation. Elife 7:
Lim, Bomyi; Fukaya, Takashi; Heist, Tyler et al. (2018) Temporal dynamics of pair-rule stripes in living Drosophila embryos. Proc Natl Acad Sci U S A 115:8376-8381
Klibaite, Ugne; Berman, Gordon J; Cande, Jessica et al. (2017) An unsupervised method for quantifying the behavior of paired animals. Phys Biol 14:015006
GTEx Consortium; Laboratory, Data Analysis &Coordinating Center (LDACC)—Analysis Working Group; Statistical Methods groups—Analysis Working Group et al. (2017) Genetic effects on gene expression across human tissues. Nature 550:204-213
Saha, Ashis; Kim, Yungil; Gewirtz, Ariel D H et al. (2017) Co-expression networks reveal the tissue-specific regulation of transcription and splicing. Genome Res 27:1843-1858
Cleard, Fabienne; Wolle, Daniel; Taverner, Andrew M et al. (2017) Different Evolutionary Strategies To Conserve Chromatin Boundary Function in the Bithorax Complex. Genetics 205:589-603

Showing the most recent 10 out of 81 publications