This is the third competing renewal application for Yale University's Vascular Research Postdoctoral T32. Of fellows who have completed training to date, 86% have obtained academic faculty positions and/or careers in science, and many have received independent grant support, strong indicators of program success. The continued goal is to provide laboratory and translational research training for highly qualified physician (M.D. and M.D./Ph.D.) and Ph.D. postdoctoral fellows in vascular biology, in preparation for careers as independent investigators in blood vessel biology- and medicine-related disciplines. Trainee selection will be based on a commitment to vascular biology and strong prior research experience or potential of same. Applications will be encouraged from clinical and basic science departments, with a nationwide competition for 7 yearly slots. Minority applicants will be specifically solicited through numerous avenues. 57% of the currently enrolled fellows are underrepresented minorities. The training will be mentor-based, also including advisory committees and didactic courses. The minimum duration of training will be 2 years. The Cardiovascular Medicine Division and Yale's Interdisciplinary Program in Vascular Biology and Therapeutics will be the foundations for the program. A key asset is Yale's interdisciplinary strength in vascular biology. Departmental affiliations for participating faculty include Cardiovascular Medicine, Pulmonary and Critical Care Medicine, Immunobiology, Pharmacology, Molecular Cellular and Developmental Biology, Pathology, Genetics, Bioengineering, Physiology, Epidemiology and Public Health, and Cardiothoracic Surgery. This is a testimony to the wide spectrum of strong vascular biology laboratories at Yale and the program's institutional nature. Faculty were chosen based on impressive histories of mentorship, ongoing vascular research productivity, strong extramural support and commitment to serve as mentors within the program. Examples of research opportunities include: (1) molecular determinants and consequences of leukocyte-endothelial cell interactions; (2) molecular imaging of angiogenesis and vascular remodeling utilizing nuclear and MR imaging in animal models; (3) mapping and identification of genes that contribute to the development of vascular disease (arterio-venous malformation, coronary artery disease) in humans; (4) engineering of vascular biomaterials, and molecular determinants of healing responses post-implantation; and (5) generation of angiogenic gene regulators for use in clinical trials. This represents a wide range of disease-related vascular research, with key translational components. Trainee progress will be monitored by each mentor, the trainee's advisory committee and the Program Co-Directors. It is the expectation that we will train future national and international leaders in vascular research. Cardiovascular disease is the leading cause of death in the U.S., and a major cause of mortality world-wide. This program will provide important opportunities for individuals from multiple disciplines to eventually lead high impact efforts at reducing the incidence of, and improving outcomes in, cardiovascular disease.

Public Health Relevance

The goal of this postdoctoral training program is to train future leaders in areas of vascular biology and cardiovascular research. Heart disease is the leading cause of death in the U.S. As such, defining the causes and mechanisms of disease continues to be of great significance. This training program, through its mentoring of future leaders in cardiovascular research, will have an important impact on health in the U.S.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Institutional National Research Service Award (T32)
Project #
5T32HL007950-18
Application #
9492852
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Scott, Jane
Project Start
2000-09-30
Project End
2021-06-30
Budget Start
2018-07-01
Budget End
2019-06-30
Support Year
18
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Yale University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
Zhang, Feng; Zarkada, Georgia; Han, Jinah et al. (2018) Lacteal junction zippering protects against diet-induced obesity. Science 361:599-603
Sheikh, Abdul Q; Saddouk, Fatima Zahra; Ntokou, Aglaia et al. (2018) Cell Autonomous and Non-cell Autonomous Regulation of SMC Progenitors in Pulmonary Hypertension. Cell Rep 23:1152-1165
Ceneri, Nicolle; Zhao, Lina; Young, Bryan D et al. (2017) Rac2 Modulates Atherosclerotic Calcification by Regulating Macrophage Interleukin-1? Production. Arterioscler Thromb Vasc Biol 37:328-340
Mazurek, R; Dave, J M; Chandran, R R et al. (2017) Vascular Cells in Blood Vessel Wall Development and Disease. Adv Pharmacol 78:323-350
Zhang, Feng; Prahst, Claudia; Mathivet, Thomas et al. (2016) The Robo4 cytoplasmic domain is dispensable for vascular permeability and neovascularization. Nat Commun 7:13517
Dubrac, Alexandre; Genet, Gael; Ola, Roxana et al. (2016) Targeting NCK-Mediated Endothelial Cell Front-Rear Polarity Inhibits Neovascularization. Circulation 133:409-21
Ola, Roxana; Dubrac, Alexandre; Han, Jinah et al. (2016) PI3 kinase inhibition improves vascular malformations in mouse models of hereditary haemorrhagic telangiectasia. Nat Commun 7:13650
Padmanabhan, Jagannath; Augelli, Michael J; Cheung, Bettina et al. (2016) Regulation of cell-cell fusion by nanotopography. Sci Rep 6:33277
Sawyer, Andrew J; Kyriakides, Themis R (2016) Matricellular proteins in drug delivery: Therapeutic targets, active agents, and therapeutic localization. Adv Drug Deliv Rev 97:56-68
Lee, Seung Hee; Du, Jing; Stitham, Jeremiah et al. (2016) Inducing mitophagy in diabetic platelets protects against severe oxidative stress. EMBO Mol Med 8:779-95

Showing the most recent 10 out of 60 publications