This Institutional National Research Service Award is designed to develop skilled investigators with research- oriented careers directed at solving basic and clinical problems in lung disease. The structure of the program is based on the premise that training requires 1) a multidisciplinary approach, 2) a close relationship between the student and mentor, and 3) a training environment with breadth and depth in both clinical and basic sciences. Training in this program spans a variety of disciplines, including cell and molecular biology, immunology, microbiology, toxicology, biochemistry, pulmonary and critical care medicine, infectious diseases, neonatology, and imaging sciences. Major research themes include lung immunology, inflammation and infection;pulmonary fibrosis and remodeling;tobacco smoke and chronic obstructive pulmonary disease;and health effects of air pollution. Four predoctoral and 4 postdoctoral trainees will be supported each year of the program. Predoctoral students who have demonstrated an interest in lung research will be accepted for training through the Graduate Education in Biomedical Sciences (GEBS) programs, after they have passed their preliminary examinations. Predoctoral trainees will be supported for up to 3 years. In this resubmitted proposal, the structure and curriculum for postdoctoral MD training has been changed, with creation of a new research track, requirement for 4 years of subspecialty training with research training and support on this grant occurring in the final 2 years, and specific expectations of publications and research grant submission by the end of training. Candidates from training programs in adult Pulmonary and Critical Care Medicine, Allergy/Immunology/Rheumatology, Neonatology, and Infectious Diseases will be considered based on potential success in and commitment to a pulmonary research-oriented career. Postdoctoral PhD trainees involved in lung-related research are also candidates for training, and are identified and recruited by members of this program. A direct research experience with research mentors forms the primary mechanism for training, supplemented by didactic courses, seminars, conferences, journal clubs, and instruction in research ethics, human and animal experimentation, and grant writing. Trainees will develop research protocols under the close supervision of their mentors, with academic and career guidance from specific programs and a Mentoring Committee. This training program will help to meet the increasing need for scientific investigators in lung biology and disease. Research by these young investigators will improve our understanding of how the respiratory system responds to injury and environmental challenges, and will improve public health by developing new and improved avenues for the prevention and treatment of lung disease.

Public Health Relevance

This training program, Multidisciplinary Training in Pulmonary Research, provides training for young scientists who want to investigate the causes and treatments of lung disease. Funds from this program support four trainees at the predoctoral level, and four trainees in the postdoctoral level. Funds from this grant help to train future scientists that will help find ways to reduce the incidence of, and improve the treatment of, respiratory diseases.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Institutional National Research Service Award (T32)
Project #
5T32HL066988-14
Application #
8723265
Study Section
NHLBI Institutional Training Mechanism Review Committee (NITM)
Program Officer
Colombini-Hatch, Sandra
Project Start
2001-09-01
Project End
2016-08-31
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
14
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Rochester
Department
Internal Medicine/Medicine
Type
School of Medicine & Dentistry
DUNS #
City
Rochester
State
NY
Country
United States
Zip Code
14627
Boule, Lisbeth A; Burke, Catherine G; Jin, Guang-Bi et al. (2018) Aryl hydrocarbon receptor signaling modulates antiviral immune responses: ligand metabolism rather than chemical source is the stronger predictor of outcome. Sci Rep 8:1826
Lacy, Shannon H; Woeller, Collynn F; Thatcher, Thomas H et al. (2018) Activated Human Lung Fibroblasts Produce Extracellular Vesicles with Anti-Fibrotic Prostaglandins. Am J Respir Cell Mol Biol :
Kim, Nina; Lannan, Katie L; Thatcher, Thomas H et al. (2018) Lipoxin B4 Enhances Human Memory B Cell Antibody Production via Upregulating Cyclooxygenase-2 Expression. J Immunol 201:3343-3351
Cameron, Scott J; Mix, Doran S; Ture, Sara K et al. (2018) Hypoxia and Ischemia Promote a Maladaptive Platelet Phenotype. Arterioscler Thromb Vasc Biol 38:1594-1606
Lacy, Shannon H; Epa, Amali P; Pollock, Stephen J et al. (2018) Activated human T lymphocytes inhibit TGF?-induced fibroblast to myofibroblast differentiation via prostaglandins D2 and E2. Am J Physiol Lung Cell Mol Physiol 314:L569-L582
Burke, Ryan M; Lighthouse, Janet K; Quijada, Pearl et al. (2018) Small proline-rich protein 2B drives stress-dependent p53 degradation and fibroblast proliferation in heart failure. Proc Natl Acad Sci U S A 115:E3436-E3445
Trembley, Michael A; Quijada, Pearl; Agullo-Pascual, Esperanza et al. (2018) Mechanosensitive Gene Regulation by Myocardin-Related Transcription Factors Is Required for Cardiomyocyte Integrity in Load-Induced Ventricular Hypertrophy. Circulation 138:1864-1878
Loelius, Shannon G; Lannan, Katie L; Blumberg, Neil et al. (2018) The HIV protease inhibitor, ritonavir, dysregulates human platelet function in vitro. Thromb Res 169:96-104
Loelius, Shannon G; Spinelli, Sherry L; Lannan, Katie L et al. (2018) In Vitro Methods to Characterize the Effects of Tobacco and Nontobacco Products on Human Platelet Function. Curr Protoc Toxicol 76:e46
Lindeman, Leila R; Randtke, Edward A; High, Rachel A et al. (2018) A comparison of exogenous and endogenous CEST MRI methods for evaluating in vivo pH. Magn Reson Med 79:2766-2772

Showing the most recent 10 out of 159 publications