Three behavioral models of excessive ethanol consumption (DID, SHAC and WID) are widely used throughout the INIA-West consortium. A fourth model intragastric consumption (IGC) is used at only one site but importantly provides a novel mouse model of what is likely to be dependence-induced drinking. A primary purpose of this core is to provide a standardized assessment of the circuits that are associated with each of these models and the changes in these circuits as the models are modified by genetic and/or pharmacologic procedures. The following aims have arranged the planned activities of the core in a systematic fashion, moving from the basic models to variations on the models. The advantage from a mapping perspective of the DID, SHAC and WID procedures is that the ethanol is consumed in a limited access period which allows one to access the circuits associated with both the initiation and continuation of the drinking episode. The proposed core has four aims/goals: 1. To map in C57BL/6J (B6) mice the circuits associated with DID, SHAC, WID and IGC using as appropriate a combination of in situ hybridization(ISH) and immunohistochemical (IHC) techniques. These studies will examine whether or not there are distinct circuits associated with the initiation and maintenance of a drinking episode. Given the widespread use of B6 mice throughout INIA-West, these data will serve as the primary reference circuits. 2. To map the relevant circuits in new genetic animal models. For DID and SHAC, replicate selected lines will be bred from heterogenous stock (HS/Npt) animals (Crabbe and Finn). The data obtained will be contrasted with the results obtained in specific aim 1. 3. To utilize the genetic and pharmacological variations on the four models to further refine the circuits associated with excessive ethanol consumption. Several UO1 applications plan to investigate variations on the basic behavioral models in order to refine at the anatomical and/or molecular level the relevant circuits. These data can be contrasted with the results obtained in aims 1 and 2. Importantly, aims 1-3 must be viewed as part of an iterative process. The core will begin to identify the relevant circuits, investigators will test the most promising targets which in turn will generate new models and thus, additional core activity. The core will also provide (aim 4) tissue for gene array and proteomics analyses and a high thoughput SNP genotyping facility for all INIA-West investigators. ? ? ?
Showing the most recent 10 out of 32 publications