The association of specific alleles and haplotypes at the HLA class I and class II loci with a variety of autoimmune diseases is well established. Recently, polymorphisms in the Killer Immunoglobulin-like Receptors (KIR) genes that encode the stimulatory and inhibitory receptors on NK cells have been reported to be associated with a few of the same HLA-associated diseases, (eg psoriatic arthritis, scleroderma, and T1D). The ligands recognized by many of these receptors are epitopes on HLA class I molecules. Our goal is to carry out case/control association analyses for Crohn's Disease and Rheumatoid Arthritis using our high resolution HLA and KIR genotyping methods. We have developed high throughput, robust, and high resolution immobilized probe methods for genotyping the HLA class I and class II loci and a high throughput MALDI-TOF method for genotyping the KIR loci. Specific DRB1 alleles have already been associated with each of these diseases (DRB1*0103 for CD and DRB1*0401 and *0404for RA) but we will evaluate the role of other HLA loci in these diseases. HLA class I typing is also critical in evaluating the role of the KIR genes since the association data must be stratified on the presence or absence of the HLA epitope ligand to examine the effects of KIR-HLA combinations. In addition, we will genotype another well established disease gene polymorphism, the PTNP22 locus, allowing stratification of the HLA and KIR association data. The analyses of HLA-KIR in population-based studies will add significantly to our understanding of the role of the innate immune system in these complex autoimmune disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project--Cooperative Agreements (U01)
Project #
3U01AI067068-03S1
Application #
7385580
Study Section
Special Emphasis Panel (ZAI1-SV-I (M2))
Program Officer
Macchiarini, Francesca
Project Start
2005-09-20
Project End
2010-02-28
Budget Start
2007-03-01
Budget End
2008-02-29
Support Year
3
Fiscal Year
2007
Total Cost
$87,761
Indirect Cost
Name
Children's Hospital & Res Ctr at Oakland
Department
Type
DUNS #
076536184
City
Oakland
State
CA
Country
United States
Zip Code
94609
Clerc, Florent; Novokmet, Mislav; Dotz, Viktoria et al. (2018) Plasma N-Glycan Signatures Are Associated With Features of Inflammatory Bowel Diseases. Gastroenterology 155:829-843
Šimurina, Mirna; de Haan, Noortje; Vu?kovi?, Frano et al. (2018) Glycosylation of Immunoglobulin G Associates With Clinical Features of Inflammatory Bowel Diseases. Gastroenterology 154:1320-1333.e10
Mack, Steven J; Udell, Julia; Cohen, Franziska et al. (2018) High resolution HLA analysis reveals independent class I haplotypes and amino-acid motifs protective for multiple sclerosis. Genes Immun :
Pappas, D J; Lizee, A; Paunic, V et al. (2018) Significant variation between SNP-based HLA imputations in diverse populations: the last mile is the hardest. Pharmacogenomics J 18:367-376
Hui, Ken Y; Fernandez-Hernandez, Heriberto; Hu, Jianzhong et al. (2018) Functional variants in the LRRK2 gene confer shared effects on risk for Crohn's disease and Parkinson's disease. Sci Transl Med 10:
Misra, Ravi; Arebi, Naila (2017) Re: Genome-Wide Association Study Identifies African-Specific Susceptibility Loci in African Americans With Inflammatory Bowel Disease. Gastroenterology 152:2082-2083
Gonsky, Rivkah; Fleshner, Phillip; Deem, Richard L et al. (2017) Association of Ribonuclease T2 Gene Polymorphisms With Decreased Expression and Clinical Characteristics of Severity in Crohn's Disease. Gastroenterology 153:219-232
Huang, Hailiang; Fang, Ming; Jostins, Luke et al. (2017) Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature 547:173-178
Kopylov, Uri; Boucher, Gabrielle; Waterman, Matti et al. (2016) Genetic Predictors of Benign Course of Ulcerative Colitis-A North American Inflammatory Bowel Disease Genetics Consortium Study. Inflamm Bowel Dis 22:2311-6
Pappas, Derek J; Marin, Wesley; Hollenbach, Jill A et al. (2016) Bridging ImmunoGenomic Data Analysis Workflow Gaps (BIGDAWG): An integrated case-control analysis pipeline. Hum Immunol 77:283-287

Showing the most recent 10 out of 50 publications