The US Department of Health and Human Services has renewed its """"""""war on cancer"""""""" by declaring the elimination of race and age disparities in cancer screening and management as a key public health priority for the next century; the National Cancer Institute Year 2010 goals echo this priority. The importance of these cancer control objectives is cast on the backdrop of the changing demographic profile of the US: by the year 2030, one in five women will be 65 years or older, and 40 percent will be from minority groups. Thus, successful achievement of these objectives will require application of effective interventions to diverse populations, and integration of evolving paradigms of breast cancer care into public health initiatives. Modeling can evaluate the success of such initiatives. However, the majority of existing models have focused on a single dimension of breast cancer care, and generally lack flexibility to study trends in outcomes among population subgroups. To address this gap, Lombardi Cancer Center, in collaboration with MEDTAP International, has constituted a multi-disciplinary team of demographers, epidemiologists, oncologists, genetics, behavioral science, and health services researchers, and economists to develop a novel discrete-event, stochastic population forecasting simulation model. Our overarching goal is to extend and use our existing model to develop an integrated model of disease history linked to sub-models portraying modifiable points in the cancer control process, including primary prevention, early detection, methods to enhance diagnosis, and improvements in treatment quality and practice (ie, models within a model). We will use this model to evaluate the impact of changes in behaviors, practice patterns, and interventions on intermediate outcomes and incidence and mortality trends. Innovative features of our model include the integration of epidemiological and biological representations of the disease process with the screening, diagnostic, and treatment, portrayal of disease in Whites and Blacks, and incorporation of the effects of comorbidities on effectiveness and quality-adjusted survival. We will test hypotheses about which services will be most effective, in which population-, age-, and health-groups, for which phase of care, in reducing overall breast cancer mortality. Secondary objectives include using existing utility data to identify areas where preferences change conclusions about effectiveness, and o use cost data to evaluate which strategies yield the maximal improvement in outcomes at the most reasonable costs. Overall, data from the model will provide a framework for setting cancer control priorities in the next century.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project--Cooperative Agreements (U01)
Project #
3U01CA088283-04S1
Application #
6946277
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Feuer, Eric J
Project Start
2000-09-26
Project End
2005-08-31
Budget Start
2003-09-01
Budget End
2005-08-31
Support Year
4
Fiscal Year
2004
Total Cost
$40,352
Indirect Cost
Name
Georgetown University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
049515844
City
Washington
State
DC
Country
United States
Zip Code
20057
Alagoz, Oguzhan; Berry, Donald A; de Koning, Harry J et al. (2018) Introduction to the Cancer Intervention and Surveillance Modeling Network (CISNET) Breast Cancer Models. Med Decis Making 38:3S-8S
Mandelblatt, Jeanne S; Near, Aimee M; Miglioretti, Diana L et al. (2018) Common Model Inputs Used in CISNET Collaborative Breast Cancer Modeling. Med Decis Making 38:9S-23S
Schechter, Clyde B; Near, Aimee M; Jayasekera, Jinani et al. (2018) Structure, Function, and Applications of the Georgetown-Einstein (GE) Breast Cancer Simulation Model. Med Decis Making 38:66S-77S
Munoz, Diego F; Plevritis, Sylvia K (2018) Estimating Breast Cancer Survival by Molecular Subtype in the Absence of Screening and Adjuvant Treatment. Med Decis Making 38:32S-43S
van Ravesteyn, Nicolien T; Stout, Natasha K; Schechter, Clyde B et al. (2015) Benefits and harms of mammography screening after age 74 years: model estimates of overdiagnosis. J Natl Cancer Inst 107:
van Ravesteyn, Nicolien T; van Lier, Lisanne; Schechter, Clyde B et al. (2015) Transition from film to digital mammography: impact for breast cancer screening through the national breast and cervical cancer early detection program. Am J Prev Med 48:535-42
Bensink, Mark E; Ramsey, Scott D; Battaglia, Tracy et al. (2014) Costs and outcomes evaluation of patient navigation after abnormal cancer screening: evidence from the Patient Navigation Research Program. Cancer 120:570-8
Lansdorp-Vogelaar, Iris; Gulati, Roman; Mariotto, Angela B et al. (2014) Personalizing age of cancer screening cessation based on comorbid conditions: model estimates of harms and benefits. Ann Intern Med 161:104-12
Graham, Amanda L; Chang, Yaojen; Fang, Ye et al. (2013) Cost-effectiveness of internet and telephone treatment for smoking cessation: an economic evaluation of The iQUITT Study. Tob Control 22:e11
Etzioni, Ruth; Gulati, Roman; Mallinger, Leslie et al. (2013) Influence of study features and methods on overdiagnosis estimates in breast and prostate cancer screening. Ann Intern Med 158:831-8

Showing the most recent 10 out of 35 publications