Food allergy has become a major health problem in westernized countries and now affects 3.5% - 4% of the U.S. population with cow's milk allergy [CMA] affecting 2.5% of young children. CMA provides an ideal model to study immunologic mechanisms responsible for allergic disease and tolerance induction. It is a common food allergic disorder that reflects both the """"""""transient"""""""" form of food allergy that is """"""""outgrown,"""""""" as seen in many other childhood food allergies [e.g. egg, soy, wheat], and the """"""""persistent,"""""""" more severe form, similar to life-long peanut, tree nut and seafood allergies. Diagnosis is definitive with the blinded food challenge, the responsible allergens [milk proteins] are well characterized including their 3-dimensional structures, and good animal models have been established that enable dissection of immunologic and systemic mechanisms at the molecular level. Over the past granting period, we demonstrated that the majority of children with IgE-mediated CMA can safely ingest baked [heat-denatured] milk products without adverse effects and identified a variety of immunologic markers [humoral and cellular] that distinguish them from the minority of children with persistent CMA who cannot tolerate any form of milk protein. Using animal models and epithelial cell lines, it was shown that IgE and CD23 are required for enhanced allergen uptake in the small intestine and are found in the stool of food-allergic but not non-allergic children, supporting their role in the allergic diathesis as well as their potential for use as a biomarker of clinical food allergy. Studies in a murine model of CMA also showed that the way specific milk proteins traffick in the Gl mucosa may play a critical role in the ultimate response of the host;i.e. immunologic tolerance vs. allergen sensitization and clinical tolerance vs. allergic reaction. Based on knowledge acquired in our previous Center grant, we will further explore clinical and underlying immunologic responses in one clinical trial examining the effects of graded exposure to heat-denatured milk products, and in a second clinical trial of milk oral immunotherapy [OIT] plus omalizumab, which we hypothesize will induce """"""""tolerance,"""""""" as opposed to """"""""desensitization"""""""" seen with standard milk OIT. We also will use novel models to delineate properties that make certain milk proteins allergenic, explore how they are processed at the cellular level, and define the role of facilitated CD23 transport in food allergic disease. Through the unique resources and collaborative projects outlined in this Center application, successful completion of the aims may lead to new paradigms in the management and treatment of food allergies and provide novel biomarkers for the diagnosis and management of patients.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
3U19AI044236-12S1
Application #
8117904
Study Section
Special Emphasis Panel (ZAI1-QV-I (J1))
Program Officer
Minnicozzi, Michael
Project Start
2000-08-01
Project End
2011-02-28
Budget Start
2010-08-01
Budget End
2011-02-28
Support Year
12
Fiscal Year
2010
Total Cost
$142,094
Indirect Cost
Name
Icahn School of Medicine at Mount Sinai
Department
Pediatrics
Type
Schools of Medicine
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Nowak-W?grzyn, Anna; Lawson, Kaitie; Masilamani, Madhan et al. (2018) Increased Tolerance to Less Extensively Heat-Denatured (Baked) Milk Products in Milk-Allergic Children. J Allergy Clin Immunol Pract 6:486-495.e5
Frischmeyer-Guerrerio, Pamela A; Masilamani, Madhan; Gu, Wenjuan et al. (2017) Mechanistic correlates of clinical responses to omalizumab in the setting of oral immunotherapy for milk allergy. J Allergy Clin Immunol 140:1043-1053.e8
Wood, Robert A; Kim, Jennifer S; Lindblad, Robert et al. (2016) A randomized, double-blind, placebo-controlled study of omalizumab combined with oral immunotherapy for the treatment of cow's milk allergy. J Allergy Clin Immunol 137:1103-1110.e11
Roda, G; Jianyu, X; Park, M S et al. (2014) Characterizing CEACAM5 interaction with CD8? and CD1d in intestinal homeostasis. Mucosal Immunol 7:615-24
Järvinen, K M; Westfall, J E; Seppo, M S et al. (2014) Role of maternal elimination diets and human milk IgA in the development of cow's milk allergy in the infants. Clin Exp Allergy 44:69-78
Savilahti, Emma M; Kuitunen, Mikael; Valori, Miko et al. (2014) Use of IgE and IgG4 epitope binding to predict the outcome of oral immunotherapy in cow's milk allergy. Pediatr Allergy Immunol 25:227-35
Caubet, Jean-Christoph; Masilamani, Madhan; Rivers, Neisha A et al. (2014) Potential non-T cells source of interleukin-4 in food allergy. Pediatr Allergy Immunol 25:243-9
Tordesillas, Leticia; Goswami, Ritobrata; Benedé, Sara et al. (2014) Skin exposure promotes a Th2-dependent sensitization to peanut allergens. J Clin Invest 124:4965-75
Järvinen, Kirsi M; Konstantinou, George N; Pilapil, Mariecel et al. (2013) Intestinal permeability in children with food allergy on specific elimination diets. Pediatr Allergy Immunol 24:589-95
Berin, M C; Wang, W (2013) Reduced severity of peanut-induced anaphylaxis in TLR9-deficient mice is associated with selective defects in humoral immunity. Mucosal Immunol 6:114-21

Showing the most recent 10 out of 34 publications