This Cooperative Center for Translational Research on Human Immunology and Biodefense is entitled 'Influenza Immunity: Protective Mechanisms against a Pandemic Respiratory Virus'. Our objective is to use vaccine-induced and naturally acquired influenza A immunity as a model for comprehensive, integrated analyses of adaptive and innate immune mechanisms and antimicrobial protection of the respiratory tract in children and adults. Influenza immunology is relevant to biodefense because influenza A has significant potential to be modified genetically to create a bioterrorist agent. Further, influenza A causes natural pandemics, which can incapacitate a large fraction of the population, endangering preparedness. Influenza A has many characteristics of microbial pathogens that could become agents of civilian bioterrorism. Among these are: capacity to cause illness with high morbidity and mortality, highly efficient person-to-person transmission, high infectivity by aerosol, resulting in the capacity to cause large outbreaks, potential to cause anxiety in the public, and potential to be weaponized. While influenza vaccines exist, the immunologic mechanisms by which protection is induced in the respiratory tact are poorly understood in the human host. Genetically altered influenza A viruses that express unique hemagglutinin (HA) and neuraminidase (NA) proteins have the capacity to infect all age groups. In a biodefense context, the rapidity with which protection can be elicited in a non-immune population is critical. The influenza A model is expected to allow a better definition of specialized adaptive B cell and T cell immune mechanisms that control infections of the respiratory system. Our investigative approach also encompasses the study of innate, natural killer cell responses to influenza, in parallel with acquisition of adaptive immunity in children and adults. Comparing influenza vaccines will identify differences when the host responds to parenterally administered, inactivated antigens, versus live attenuated virus delivered via the respiratory route. At our Center, investigators leading the Research Resource Technical Development component and the Research Projects will undertake rapid translation of basic immunology methods into applications for analyzing innate and acquired influenza A immunity. These innovations will have broad relevance for understanding human immunity against microbial pathogens of concern for biodefense.
Showing the most recent 10 out of 249 publications