PILOT PROJECTS CORE for Influenza Immunity: Protective Mechanisms against a Pandemic Respiratory Virus. The purpose of the Pilot Projects Core is to support investigators new to human immunology studies or with novel ideas or technologies to be applied to human immunological questions. These small grants will provide funds to obtain pilot data as a foundation for subsequent application for extramural funding.
The specific aims of this Core are: l.A.To solicit proposals on an annual basis in the Stanford research community for pilot projects related to human immunology. l.B.To review these proposals and to award seed grants for 1-3 projects/year. 1.C.To provide infrastructure support for the Pilot Projects.during the award period._ l.D.To monitor the progress of the Pilot Projects on a quarterly basis and to monitor the overall success of the program by tracking publications and extramural funding obtained on the basis of Pilot Project support.

Public Health Relevance

Annual influenza epidemics are a serious public health problem;influenza pandemics are a major threat. It is important to provide resources such as seed funds for Pilot Projects to support new research ideas or technologies that could be developed to address critical questions in human immunology.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
2U19AI057229-06
Application #
7701558
Study Section
Special Emphasis Panel (ZAI1-KS-I (J4))
Project Start
2009-04-01
Project End
2014-03-31
Budget Start
2009-04-01
Budget End
2010-03-31
Support Year
6
Fiscal Year
2009
Total Cost
$191,076
Indirect Cost
Name
Stanford University
Department
Type
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Sweeney, Timothy E; Thomas, Neal J; Howrylak, Judie A et al. (2018) Multicohort Analysis of Whole-Blood Gene Expression Data Does Not Form a Robust Diagnostic for Acute Respiratory Distress Syndrome. Crit Care Med 46:244-251
Kronstad, Lisa M; Seiler, Christof; Vergara, Rosemary et al. (2018) Differential Induction of IFN-? and Modulation of CD112 and CD54 Expression Govern the Magnitude of NK Cell IFN-? Response to Influenza A Viruses. J Immunol 201:2117-2131
Wilk, Aaron J; Blish, Catherine A (2018) Diversification of human NK cells: Lessons from deep profiling. J Leukoc Biol 103:629-641
Sweeney, Timothy E; Wynn, James L; Cernada, María et al. (2018) Validation of the Sepsis MetaScore for Diagnosis of Neonatal Sepsis. J Pediatric Infect Dis Soc 7:129-135
Bukhari, Syed Ahmad Chan; O'Connor, Martin J; Martínez-Romero, Marcos et al. (2018) The CAIRR Pipeline for Submitting Standards-Compliant B and T Cell Receptor Repertoire Sequencing Studies to the National Center for Biotechnology Information Repositories. Front Immunol 9:1877
Azad, Tej D; Donato, Michele; Heylen, Line et al. (2018) Inflammatory macrophage-associated 3-gene signature predicts subclinical allograft injury and graft survival. JCI Insight 3:
Leipold, Michael D; Obermoser, Gerlinde; Fenwick, Craig et al. (2018) Comparison of CyTOF assays across sites: Results of a six-center pilot study. J Immunol Methods 453:37-43
Sibener, Leah V; Fernandes, Ricardo A; Kolawole, Elizabeth M et al. (2018) Isolation of a Structural Mechanism for Uncoupling T Cell Receptor Signaling from Peptide-MHC Binding. Cell 174:672-687.e27
Ju, Chia-Hsin; Blum, Lisa K; Kongpachith, Sarah et al. (2018) Plasmablast antibody repertoires in elderly influenza vaccine responders exhibit restricted diversity but increased breadth of binding across influenza strains. Clin Immunol 193:70-79
Sweeney, Timothy E; Perumal, Thanneer M; Henao, Ricardo et al. (2018) A community approach to mortality prediction in sepsis via gene expression analysis. Nat Commun 9:694

Showing the most recent 10 out of 249 publications